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‘About This Manual

May 1993

Objectives of This Manual

This manual is intended to help you learn how to program in the C* data parallel
programming language.

Intended Audience

Readers are assumed to have a working knowledge of C programming and a
general understanding of the components of the Connection Machine system on
which they will be running their programs.

Revision Information

This is a revision of the C* Programming Guide, Version 6.0.2. The major
difference from the previous version is the inclusion of information about the
CM-5 implementation of C*.

Organization of This Manual

Part I Getting Started
These two chapters introduce C* and data parallel programming
on the Connection Machine system and provide a step-by-step
explanation of a simple program.
Part I Programming in C*
These eight chapters describe how to write programs in C*.

Copyright © 1990-1993 Thinking Machines Corporation X
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Appendix C
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C* Programming Guide

C* Communication Functions

Data parallel programming lets you operate on large
multi-dimensional sets of data at the same time. These four
chapters describe C* library functions that you can use to trans-
fer values among items in the data set and to perform cumulative
operations along any of the dimensions of the data set.

CM-200 C* Performance Hints

This appendix suggests ways of increasing the performance of
a CM-200 C* program.

Using allocate_detailed_shape for the CM-5

This appendix describes how to use the allo-
cate_detailed shape function to explicitly control how a
shape is laid out on the CM-5.

Memory Layout on the CM-5

This appendix describes the memory layout of parallel variables
on the CM-5, and explains how to manipulate data via shape
aliasing.

CM-5 C* Table Lookup Utility

This appendix describes a utility available in CM-5 C*.

Glossary
This is a glossary of technical terms used in the manual.

Associated Documents

If you are going to run your programs on a CM-5 system, see the CM-5 C* User §
Guide for more information.

If you are going to run your programs on a CM-200, CM-2, or CM-2a system, see
the CM-200 C* User s Guide for more information.

For more basic information on C*, see the manual Getting Started in C*.

For information on improving the performance of your CM-5 C* program, see
the CM-5 C* Performance Guide.
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Information about related aspects of CM programming is contained in other
volumes of the documentation set for your CM system.

C* is based on the standard version of the C programming language proposed by
the X3J11 committee of the American National Standards Institute; this version
is referred to as Standard C in this manual. The standard is available from:

X3 Secretariat

Computer and Business Equipment Manufacturers Association
311 First Street, N.W.

Suite 500

Washington, DC 20001-2178

Related books about Standard C include:

®* Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, 2nd edition (Englewood Cliffs, New Jersey: Prentice-Hall,
1988)

=  Samuel P. Harbison and Guy L. Steele Jr., C: A Reference Manual, third
edition (Englewood Cliffs, New Jersey: Prentice-Hall, 1991)

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention ' Meaning

bold typewriter C* and C language elements, such as keywords,
operators, and function names, when they appear
embedded in text. Also UNIX and CM System
Software commands, command options, and file

names.
italics Parameter names and placeholders in function and

command formats. -
typewriter Code examples and code fragments.

$ bold typewriter In interactive examples, user input is shown in
typewriter bold typewriter and system output is shown
in regular typewriter font.

May 1993 :
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Thinking Machines Customer Support encourages customers to report etrors in
Connection Machine operation and to suggest improvements in our products.

‘When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines’
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

May 1993

customer-support@think.com

ames ! think!customer-support

Thinking Machines Corporation
Customer Support

245 First Street

Cambridge, Massachusetts 02142-1264

(617) 234-4000
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Chapter 1

What Is C*?

1.1

May 1993

C* (pronounced “sea-star”) is an extension of the C programming language
designed to help users program massively parallel distributed-memory
computers. In addition, it is a concise and efficient language for programming
many other architectures, including those with shared memory, vector
processors, pipelining, and superscalar execution units. This chapter and Chapter
2 introduce C*.

C*and C

C* implements the ANSI standard C language (referred to in this guide as
Standard C). Programs written in Standard C compile and run correctly under C*
(except when they use one of the words that are newly reserved in C*). In
addition, C* provides new features to aid in writing programs for massively
parallel computers. These features include:

* A method for describing the size and shape of parallel data and for
creating parallel variables. Shapes and parallel variables are discussed in
Chapters 3, 4, and 9.

= New operators and expressions for parallel data, and new meanings for
 standard operators that allow them to work with parallel data. Operators
are discussed in Chapter 5.

= Methods for choosing the parallel variables, and the specific data points
within parallel variables, upon which C* code is to act. These features are
discussed in Chapters 4 and 6. '

Copyright © 1990-1993 Thinking Machines Corporation 3
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® New kinds of pointers that point to parallel data and to shapes. C* pointers
are discussed in Chapter 7.

® Changes to the way functions work so that, for example, a parallel variable
can be used as an argument. Chapter 8 describes C* functions.

® Methods for communication among parallel variables. See Chapter 10.

= Library functions that also allow communication among parallel
variables. Chapters 11-14 describe these functions.

1.2 C*Implementations

In addition to a general description of how to program in the C* language, this
guide provides specifics about two implementations of C*: '

= CM-200 C* — The CM-200 compiler translates a C* program into a serial
C program made up of standard serial C code and calls to Paris, the
CM-200’s parallel instruction set. This code is then passed to the C
compiler of the CM-200’s front end, which handles it in the normal way
to produce an executable load module. The serial C code is executed on
the front end; the Paris instructions are executed on the CM. Programs
compiled with the CM-200 C* compiler can run on the CM-200, CM-2, and
CM-2a Connection Machine systems.

® (CM-5 C* — The CM-5 compiler translates a C* program into assembly
code. Serial instructions are executed on the CM-5’s partition manager;
parallel instructions are executed on its processing nodes or vector units.
When compiled with the -node option, copies of the program run on
individual nodes; serial instructions are executed on the node, and parallel
instructions are executed on the node’s vector units.

There is in addition a Sun-4 implementation of C*. This implementation is based
on the CM-5 compiler, but lets you run your programs on a Sun-4 workstation,
without CM hardware. Unless otherwise specified, all notes in this manual that
apply to the CM-5 implementation also apply to the Sun-4 implementation.

There are some implementation differences between these compilers. The
differences are noted in this guide.

May 1993
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1.3 Program Development Facilities

'C* uses its own compiler, run-time libraries, and header files.

C* can use standard UNIX programming tools such as make. In addition, you can
execute, debug, and visualize data for a C* program within Prism, the CM’s
programming environment.

The C* compiler and related program development facilities are described more
fully in the C* User s Guide for either the CM-200 or the CM-5.

May 1993
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Chapter 2
Using C*

May 1993

This chapter presents a simple C* program that illustrates some basic features of
the language. At this point we are not going to describe these features in detail;
the purpose is simply to give a feel for what C* is like. After the program has
been presented, we briefly describe how to compile and execute it.

The program sets up three parallel variables, each of which consists of 65,536
individual data points called elements. It then assigns integer constants to each
element of these parallel variables and performs simple arithmetic on them.

#include <stdio.h>

* 1. Declare the shape and the variables

*/

shape [2] [32768]ShapeA;
int:ShapeA pl, p2, p3;
int sum = 0;

main ()

{

* 2. Select the shape
*/
with (Shapea) {

/*

* 3, Assign values to the parallel variables
*/
plL = 1;

Copyright © 1990-1993 Thinking Machines Corporation
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P2 = 2;
/*
* 4. Add them
*/
pP3 = pl + pP2;
/*
* 5, Print the sum in one element of p3
*/
printf ("The sum in one element is %d.\n”, [0] [1]1p3):
/*

* 6. Calculate and print the sum in all elements of p3

*/

sum += p3;
printf ("The sum in all elements is %d.\n”, sum);

}
Its output is:

The sum in one element is 3.
The sum in all elements is 196608. -

Before we go through the program, notice the file extension, .cs, in the
program’s name. C* source files must have this .cs extension.

Step 1: Declaring Shapes and Parallel Variables

Shapes

The initial step in dealing with parallel data in a C* program is to declare its
shape — that is, the way the data is to be organized. In Step 1 of add.cs, the
line

shape [2] [32768]ShapeA;

May 1993
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declares a shape called SshapeA. ShapeA consists of 65,536 positions, as shown

in Figure 1.
Shapea
6 1 2 32767

0

1 X

N
Position
Figure 1. The shape ShapeA.

2.1.2
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Shapea has two dimensions; you can also declare shapes with other numbers of
dimensions. The choice of two dimensions here is arbitrary. The appropriate
shape depends on the data with which your program will be dealing.

Parallel Variables

Once you have declared a shape, you can declare parallel variables of that shape.
In add.cs, the line

int:ShapeA pl, p2, p3;

declares three parallel variables: p1, p2, and p3. They are of type int and of
shape Shapea. This declaration means that each parallel variable is laid out
using Shapea as a template, with memory allocated for one element of the
variable in each of the 65,536 positions specified by shapea. Figure 2 shows the
three parallel variables of shape Shapea.

Copyright © 1990-1993 Thinking Machines Corporation
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0 1 2 32767
0
pl
1 \\
Elements
V'
p2 v
p3

2.1.3

22

Figure 2. Three paralle] variables of shape ShapeA.

With C*, you can perform operations on all elements of a parallel variable at the ﬁ
same time, on a subset of these elements, or on an individual element. -

Scalar Variables
In Step 1, the line
int sum = 0;

is Standard C code that declares and initializes a C variable. These C variables
are called scalar in this guide to distinguish them from C* parallel variables. In
CM-200 C*, memory for Standard C variables is allocated on the front end; in the
CM-5 implementation (when the program is not compiled with the ~node
option), it is allocated on the partition manager.

Step 2: Selecting a Shape

In add. cs, the line éﬁ"

May 1993
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with (Shapea) /* Step 2 */

tells C* to use ShapeA in executing the code that follows. In other words, the
with statement specifies that only the 65,536 positions defined by Shapea are
active. In C* terminology, this makes ShapeA the current shape. With some
exceptions, the code following the with statement can operate only on parallel
variables that are of the current shape, and a program can execute most parallel
code only within the body of a with statement.

2.3 Step 3: Assigning Values to Parallel Variables

Once a shape has been selected to be the current shape, the program can include
statements that perform operations on parallel variables of that shape. Step 3 in_
add.cs is a simple example of this:

pl = 1; /* Step 3 */
p2 = 2;

The first statement assigns the constant 1 to each element of p1; the second
statement assigns 2 to each element of p2. After these two statements have been
executed, p1 and p2 are initialized as shown in Figure 3.

pl = 1;
p2 = 2; 0 1 2 32767
0| 1 1 1 1
pl .
1 1 1 1 1
2 2 2 2
pz *ee
2 2 2 2
Figure 3, Initialized parallel variables.
May 1993
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Note that the statements in Step 3 look like simple C assignment statements, but
the results are different (although probably what you would expect) because p1
and p2 are parallel variables. Instead of one constant being assigned to one scalar
variable, one constant is assigned simultaneously to each element of a parallel
variable.

Step 4: Performing Computations Using

Parallel Variables

Step 4 in add. cs is a simple addition of parallel variables:
p3 = pl + p2;

In this statement, each element of p1 is added to the element of p2 that is in the
same position, and the result is placed in the element of p3 that is also in the same
position. Figure 4 shows the result of this statement.

P3 = pl + p2;

0 1 2 32767
‘0] 1 1 1 1
pl see +
1] 1 1 1 1
2 2 2 2
pa see =
2 2 2 2
3 3 3 3
p3 .
3 3 3 3

Figure 4. Addition of parallel variables.

Like C* assignment statements, C* paralle] arithmetic operators look the same
as the standard C arithmetic operators, but work differently because they use
parallel variables.

May 1993
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Step 5: Choosing an Individual Element of a
Parallel Variable

In Step 5 of add.cs we print the sum in one element of p3. Step 5 looks like
a standard C printf statement, except for the variable whose value is to be

printed:

[0l [11p3
[o] [1] specifies an individual element of the parallel variable p3. Elements are
numbered starting with 0, and you must include subscripts for each dimension

of the parallel variable. Thus, [0] [1]p3 specifies the element in row 0, column
1 of p3, and the printf statement prints the value contained in this element.

2.6

9

May 1993

- Figure 5. Element [0][1] of p3.

Note that this print£ statement would be incorrect:
printf ("The sum in one element is %d.\n”, p3); /* wrong */

Different elements of p3 could have different values (even though they are all
the same in the sample program), so print£ would not know which one to print.

Step 6: Performing a Reduction Assignment of a
Parallel Variable

So far, add. s has demonstrated assignments to parallel variables and addition
of parallel variables. This line in the program:

Copyright © 1990-1993 Thinking Machines Corporation
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gsum += p3; /* Step 6 */

is an example of a reduction assignment of a parallel variable. In a reduction
assignment, the variable on the right-hand side must be parallel, and the variable
on the left-hand side must be scalar. The += reduction assignment operator sums
the values in all elements of the paralle]l variable (in this case, p3) and adds this
sum to the value in the scalar variable (in this case, sum); see Figure 6. (Note that
the value of the scalar variable on the left-hand side is included in the addition;
that is why add. cs initializes sum to 0 in Step 1.)

sum += p3;

sum 196608

\ o 1 2 32767

p3

Figure 6. The reduction assignment of parallel variable p3.

The final statement of the program simply prints in standard C fashion the value
contained in sum.

Note the first closing brace, on the line after the final printf statement. This
brace ends the block of statements within the scope of the with statement in

Step 2.

May 1993
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Compiling and Execljting the Program

Compiling

You compile a C* program using the command ¢s on a computer on which the
C* compiler is installed. To compile the program add. cs, type:

% cs add.cs

Use the -cm2, —~cm200, ~cmS, or ~cmeim option to specify the hardware for
which the program is to be compiled (there is also a site-specific default). On the
CM-5, specify the ~sparc or ~vu option to specify whether you are compiling
to run on the processing nodes or vector units.

As with the C compiler command e, this command produces an executable load
module, placed by default in the file a.out.

Executing

On a CM, you can execute the resulting load module from a front end or partition
manager as you would any program or UNIX command. For example:

$ a.out

For more information on how to compile and execute a C* program, see the C*
User s Guide for the CM-5 or CM-200.
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Using Shapes and Parallel Variables

The sample C* program in Chapter 2 began by declaring a shape and several
parallel variables. Shapes and parallel variables are the two most important addi-
tions of C* to Standard C. This chapter introduces these topics; Chapter 9
discusses them in more detail.

Q‘JT’ 3.1 What Is a Shape?

A shape is a template for parallel data, a way of logically configuring data. In C*,
you must define the shape of the data before you can operate on it. A shape is
defined by:

= The number of its dimensions. This is referred to as the shape’s rank. For
example, a shape of rank 2 has two dimensions. A shape can have from
1 to 31 dimensions. A dimension is also referred to as an axis.

» The number of positions in each of its dimensions. A position is an area
that can contain individual values of parallel data.

The total number of positions in a shape is the product of the number of positions
in each of its dimensions. Thus, a 2-dimensional shape with 4 positions in axis
0 (the first dimension) and 8 positions in axis 1 (the second dimension) has 32
total positions, organized as shown in Figure 7. (By convention in this guide, axis
0 denotes the row number, and axis 1 denotes the column number.)

)

May 1993 19
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Figure 7. A 4-by-8 shape,

NOTE FOR USERS OF CM-200 C*

The CM-200 implementation of C* imposes these restrictions
on shapes in C*:

® The number of positions in each dimension of a shape
must be a power of two.

= The total number of positions in the shape must be some
multiple of the number of physical processors in the sec-
tion of the CM that the C* program is using. '

For example, if the program is running in a CM section with
8192 physical processors, it can have shapes with 8192 posi-
tions, 16384 positions, and so on. You can arrange them 2 by
4096, 4 by 4 by 512, and so on.

May 1993
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3.2 Choosing a Shape

3.3

May 1993

The choice of a shape depends on the data that the C* program is going to be
using. The shape typically reflects the natural organization of the data. For
example:

A database program for the employee records of a large company might
use a 1-dimensional shape, with the number of positions equaling the
number of employees.

A graphics program might use a shape representing the 2-dimensional im-
ages that the program is to process. If the images have 256 pixels in the
vertical dimension and 256 pixels in the horizontal dimension, a shape of
rank 2 with 256 positions in each dimension would be appropriate. This
would let each position represent a pixel in an image.

A program to analyze stress in a solid object might use a 3-dimensional
shape, with each axis representing a dimension of the object, and each po-
sition representing some portion of the volume of the object.

Declaring a Shape

Here is a declaration of a shape in C*:

shape [16384]employees;

This statement declares a shape called employees. It has one dimension (a rank
of 1) and 16384 positions.

Let’s take a closer look at the components of the statement:

shape is a new keyword that C* adds to Standard C.

[16384] specifies the number of positions in the shape. If the shape is
declared at file scope, or as an extern or static at block scope, the
value in brackets must be a constant expression. Otherwise, it can be any
expression that can be evaluated to an integer. This follows the ANSI C
standard.

Copyright © 1990-1993 Thinking Machines Corporation
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® employees is the name of the shape. Shape names follow standard C
naming rules. They are in the same name space as variables, functions,
typedef names, and enumeration constants.

Figure 8 shows the shape declared above.

shape employees

0 1 2 3 16383

3.3.1

Figure 8. The shape employees.

A 2-dimensional shape adds another number, in brackets, to the right of the first
set of brackets. This number represents the number of positions in the second
dimension. For example:

shape [256] [512] image;

This shape has 256 positions along axis 0 and 512 positions along axis 1. Each
additional dimension is represented by another number in brackets, to the right
of the previous dimensions.

Individual positions within a shape can be identified using bracketed numbers as
coordinates. For example, position [4] of shape employees is the fifth position
in the shape (numbering starts with 0, as in C). Position [47][112] of shape
image is the position at coordinate 47 along axis 0 and 112 along axis 1.

Deélaring More Than One Shape

A program'can include many shapes. You can use a single shape statement to
declare more than one shape. For example:

shape [16384]employees, [256] [512]image;

May 1993
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3.3.2 The Scope of a Shape

A shape’s scope is the same as that of any identifier in Standard C. For example,
a shape declared within a function or block is local to that function or block. A
shape declared at global scope can be referenced anywhere in the source file after
its declaration.

NOTE: If a block contains a shape declaration, you should not branch into it (for
example, with a switch or goto statement); the behavior is undefined.

3.4 Obtaining Information about a Shape

You can obtain information about a shape by using the C* intrinsic functions
positionsof, rankof, and dimof. (Intrinsic functions are new in C*; they
have function-like syntax, but they must be known to the compiler — for exam-
ple, because they don’t follow all Standard C rules for functions.)

® positionsof takes a shape as an argument and returns the total number
of positions in the shape.

® rankof takes a shape as an argument and returns the shape’s rank.

® dimof takes two arguments: a shape and an axis number. It returns the
number of positions along that axis.

The simple C* program below displays information about a shape.

#include <stdio.h>
shape [16384]employees, [256] [512]image;

main ()

{

printf (”Shape ’‘employees’ has rank %d and %d positions.\n”,
rankof (employees), positionsof (employees));

printf (”Shape ’‘image’ has rank %d and %d positions.\n”,
rankof (image), positionsof (image));

printf (”“Axis 0 has %d positions; axis 1 has %d positions.\n”,
dimof (image, 0), dimof (image,1));

May 1993
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Its output is:

Shape ’'employees’ has rank 1 and 16384 positions.
Shape ’'image’ has rank 2 and 131072 positions.
Axis 0 has 256 positions; axis 1 has 512 positions.

These intrinsic functions can be used in other, more interesting contexts, as we
discuss later.

More about Shapes
So far, we have coveréd the basics about shapes in C*. Chapter 9 discusses more
advanced aspects of shapes. For example:

= Partially specifying a shape

* Copying shapes

® Dynamically allocating a shape

What Is a Parallel Variable?

Once a program has declared a shape, it can declare variables of that shape.
These variables are called parallel variables.

Parallel and Scalar Variables

A good way to understand parallel variables is to compare them with standard
C variables. As we mentioned in Chapter 2, Standard C variables are referred to
in this guide as scalar to distinguish them from parallel variables. A scalar vari-
able contains only one “item” — one number, one character, and so on. A
parallel variable contains many items. (Note that Standard C uses the term scalar
in a slightly different way, to refer collectively to arithmetic and pointer types.
We consider a Standard C array or structure, for example, to be scalar because
it contains only one array or structure.)

A scalar variable has the following associated with it: é 3

May 1993
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" a type, along with its modifiers and qualifiers, (for example, char, un-
signed int, long double) that defines how much memory is to be
allocated for the variable and how operators deal with it

= a storage class (for example, auto, static) that defines the manner in
which the memory is to be allocated

Like a scalar variable, a parallel variable has a type and a storage class, but in
addition it has a shape. The shape defines how many elements of a parallel vari-
able exist, and how they are organized. Each element exists in a position in the
shape and contains a single value for the parallel variable. If a shape has 16384
positions, a parallel variable of that shape has 16384 elements, one for each
position.

Each element of a parallel variable can be thought of as a single scalar variable.
But the advantage of a parallel variable is that C* lets a program carry out opera-
tions on all elements (or any subset of elements) of a parallel variable at the same
time. As the sample program in Chapter 2 demonstrated, you can:

® Assign a constant to all elements of a parallel variable at the same time.
= Declare multiple parallel variables of the same shape.

=  Perform an arithmetic operation on all elements of a parallel variable at
the same time.

» Do reduction assignments of data in all elements of a parallel variable.

As we explain later in this manual, parallel variables that have different shapes
can interact, but interactions between parallel variables are more efficient if the
parallel variables are of the same shape.

Declaring a Parallel Variable

Before declaring a parallel variable, you must define the shape that the parallel
variable is to take. For example, assume that this shape has been defined:

shape [16384]employees;

You can then declare parallel variables of this shape. For example:

Copyright © 19901993 Thinking Machines Corporation



unsigned int employee_id:employees;

Interpret the colon in this syntax to mean “of shape shapename.” Thus, this state-
ment declares a parallel variable called employee_id that is of shape
employees. unsigned int specifies the type of the parallel variable em-
ployee_id. Parallel variable names, like shape names, follow Standard C
naming rules.

3.71

Figure 9 shows this parallel variable.
shape employees
6 1 2 3 16383
employee_1d cee } int
Figure 9. A parallel variable of shape employees. (63

Declaring More Than One Parallel Variable

You can declare more than one paralle] variable in the same statement, if they are
of the same type. For example:

unsigned int employee_id:employees, age:employees;
The parallel variables need not be of the same shape. For example:

unsigned int employee_id:employees, fieldl:image;

A Shortcut for Declaring More Than One Parallel Variable

If parallel variables have the same type and same shape, C* provides a more
concise method for declaring them. Put the “:shapename™ after the type rather
than after each parallel variable. For example:

unsigned int:employees employee_id, age, salary; éa

May 1993
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The parallel variables employee_1id, age, and salary are all unsigned
ints of shape employees. This syntax is generally used except when parallel
variables of different shapes are being declared.

Figure 10 shows the three parallel variables that this statement creates.

shape employees
0 1 2 3 16383
employee_1id oes } int
age ces
salary cee

Figure 10. Three parallel variables of shape employees.

3.7.2 Positions and Elements

As we have mentioned, a shape is a template for the creation of parallel variables.

- It is important to keep in mind the distinction between positions of a shape and
elements of parallel variables that have been declared to be of that shape. As
shown in Figure 11, elements with the same coordinates can be considered to
occupy the same position in the shape. For example, the third elements of em-
ployee-1id, age, and salary are all at position [2] of shape employees.
These elements are referred to as corresponding elements. Corresponding ele-
ments are an important concept in C*.

May 1993
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shape employees .
position

employee_id

age

salary

corresponding elements

" Figure 11. Corresponding elements.

3.7.3 The Scope of Parallel Variables

Parallel variables follow the same scoping rules as standard scalar variables (and
shapes). For example, a parallel variable declared within a function or block is
local to that function or block.

NOTE: As with shape declarations, if a block contains a paralle] variable declara-
tion, you should not branch into it (for example, with a switch or goto
statement); the behavior is undefined.

3.8 Declaring a Parallel Structure

You can declare an entire structure as a parallel variable. For example:

shape [16384]employees;
struct date {

int month;

int day;
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int year;
}i
struct date:employees birthday;

The final line of code defines a parallel variable called bixrthday. It is of shape
employees and of type struct date. This parallel structure is shown in

Figure 12.
shape employees
0 1 2 3 16383
month eee } int
structure
birthday day e
year

Figure 12. A parallel structure of shape employees.

EachelemeMofthepataHelstrucﬂnecontainsascalarsuuctﬁre,whichinnnn
will contain the birthday of an employee.

As with non-structured variables, you can declare more than one paralle] struc-
ture in-a single statement. For example:

struct date:employees birthday, date_of hire;
You can declare parallel structures of different shapes. For example:
struct date birthday:employees, date_of_purch:equipment;

Note the different syntax, with “:shapename™ coming after each parallel
variable. ‘

You can also use this syntax for declaring a parallel structure:

struct date {
int month;
int day;

May 1993 :
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int year;
} :employees birthday;

Accessing a member of a parallel structure is the same as accessing a member
of a scalar structure. For example, birthday.day specifies all elements of
structure member day in the parallel structure birthday.

Some additional points about structures:

®  Only scalar (that is, non-parallel) variables are allowed within parallel or
scalar structures. Pointers to paralle! variables are allowed within scalar
structures, however.

= Shapes are not allowed within parallel or scalar structures; a pointer to a
shape is allowed within a scalar structure. (Pointers to shapes are dis-
cussed in Chapter 7.)

=  You can include a scalar array within a parallel structure; you cannot in-
clude pointers of any kind.

= C¥, like Standard C, allows structures to be nested.

Declaring a Parallel Array

You can declare an array of parallel variables. For example,

shape [16384]employees;
int:employees ratings[3];

declares an array of three parallel ints of shape employees, as shown in
Figure 13. ratings [0] specifies the first of these parallel variables, rat-
ings[1] the second, and ratings[2] the third.
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shape employees
0 1 2 3 16383
ratings[0] } int
array
ratings (1]
ratings g
ratings[2]"

Figure 13, A parallel array of shape employees.

Please note the difference between an element of a parallel array and an element
of a parallel variable:

® Anelement of a parallel array, like ratings [0] in Figure 13, is a parallel
variable. It has values for each position of its shape.

= An element of a parallel variable is scalar, and exists in only one position.
ratings [0] consists of 16384 separate parallel variable elements.

You can also use the alternative syntax for declaring a parallel array. For
example:

int ratings([3] :employees;

We discuss paralle! arrays further in Chaptef 7, where we explain their relation-
ship to pointers.

3.10 Initializing Parallel Variables

You can initialize a paralle] variable when you declare it. The initializer must be
a single scalar value. Each element of the parallel variable is set to that value. For
example,
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shape [65536]Shapea;
int:ShapeA pl = 6;

sets each element of parallel variable p1 to 6. -

If the variable is an automatic, the initializer can be an expression that can be
evaluated at the variable’s scope. For example,

main()
{
int i = 12;
shape [65536]Shapea;
int:ShapeA pil = (6+i);
}

sets each element of p1 to 18.

If there is no initializer in a parallel variable declaration, and the variable has
static storage duration, each element of the paralle] variable is set to 0; this fol-
lows Standard C.

Initializing Parallel Structures and Parallel Arrays

Members of parallel structures and elements of parallel arrays can be initialized
only to scalar constants; this too follows Standard C.

Obtaining Information about Parallel Variables

Once you have declared a parallel variable in a program, you can obtain informa-
tion about it, just as you can for a shape.

The positionsof, rankof, and dimof Intrinsic Functions

The positionsof, rankof, and dimof intrinsic functions described in Section
3.4 can be applied to parallel variables as well as to shapes. For example, if age
is a parallel variable of shape employees:

(9
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®* rankof (age) returns the rank of employees.

® positionsof (age) returns the total number of elements of age (and
any other parallel variable of shape employees). Note that the number of
elements of a parallel variable is the same as the number of positions in
the parallel variable’s shape.

® dimof (age, 0) returns the number of elements in axis 0 of age (and any
other parallel variable of shape employees).

The shapeof Intrinsic Function

C* includes another intrinsic function that applies only to a parallel variable. The
shapeof intrinsic function takes a parallel variable as an argument and returns
the shape of the parallel variable. For example, if a program contains these
declarations:

shape [16384]employees;
unsigned int:employees age;

shapeof (age) returns the shape employees.

shapeof (age) is a shape-valued expression; it can be used anywhere the shape
name employees is used. For example, once age is declared, a subsequent dec-
laration of a parallel variable:

unsigned int:employees salary;
could also be written:
unsigned int:shapeof (age) salary;

Similarly, a parallel structure like the one shown in Section 3.8 could be declared
as follows:

struct date:shapeof (age) birthday;
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3.12 Choosing an Individual Element of a Parallel Variable

As we described earlier, an individual position can be described by its coordi-
nates along the axes of the shape. These coordinates are also used in specifying
an individual element of a parallel variable. As with a shape declaration, the co-
ordinates appear in brackets to the left of the variable name, starting with the
coordinate for axis 0. These coordinates are also referred to as a left index.

Thus, if age is a parallel variable of a 1-dimensional shape named employees,
[0] age specifies the first element of age, and [4] age specifies the fifth ele-
ment of age.

For a 2-dimensional parallel variable called pvar,
® [o0] [0]pvar specifies the element in row 0, column 0.
® [1] [0]1pvar specifies the element in row 1, column 0.
® [o] [1]1pvar specifies the element in row 0, column 1.

and so on. Recall that axis O refers to the rows, and axis 1 refers to the columns.

A left index must be O or greater. The behavior of an operation that includes a é ”’
negative left index is undefined. S

You can use a left index with an element of a parallel array. For example,
[77]A1[4]

specifies the seventy-eighth parallel variable element of A1[4], which is the
fifth array element of the parallel array A1.

You can use scalar variables or expressions in place of numbers in the left index.
For example, if a program contains this declaration,

int j = 4;
the expression [J]age specifies the fifth instance of age.

It is also possible to use parallel variables or expressions in the left index. We
leave that topic, however, for Chapter 10.
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3.12.1 Precedence

The precedence level of left indexes lies between the bottom of the list of postfix
expressions and the top of the list of unary operators.

3&? *
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Choosing a Shape

In Chapter 3 we described how to declare a shape, which is used as a way of
organizing parallel data. You can declare more than one shape in a C* program.
However, a program can (in general) operate on parallel data from only one
shape at a time. That shape is known as the current shape. You designate a shape
to be the current shape by using the with statement, which C* has added to Stan-
dard C.

The with _Statement

Assume a program contains these declarations for a shape andthreeparallel vari-
ables of that shape:

shape [16384]employees;
unsigned int:employees employee_id, age, salary;

Before operations can be performed on these parallel variables, employees
must become the current shape. _

To make employees the current shape, use the with statement as follows:
with (employees)

Any statement (or block of declarations and statements) following with (em-
ployees) can operate on parallel variables of shape employees. For example,

with (employees)
age = 0;

37
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initializes all elements of the parallel variable age to 0. (We discuss parallel as-
signment statements in Chapter 5.) If each element of salary has been
initialized to each employee’s current salary, this code:

unsigned int:employees new_salary;
with (employees)
new_salary = salary*2;

stores twice each employee’s salary in the elements of new_salary. (Once
again, we cover arithmetic with parallel variables in the next chapter.)

You can also include operations on scalar variables inside a with statement. For
example, you can declare a scalar variable called sample_salary and assign
one of the values of salary to it:

with (employees) {
unsigned int sample_salary;
sample_salary = [0]salary;
}

Here is what you can do inside a with statement:

shape [16384]employees, [8192]equipment;
unsigned int employee_id;employees,
date_of_ purchase:equipment;

main()
{
with (employees)
date_of purchase = 0; /* This is wrong */
}

The program cannot perform this operation on date_of_purchase, since this’
paralle] variable is not of the current shape. However, this is legal:

shape [16384)employees, [8192]equipment;
unsigned int employee_id:employees,
date_of_ purchase:equipment;

main()
{
with (employees)
[61date_of purchase = 0; /* This is legal */
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In this case, [6]date_of _purché.se is scalar, since it refers to a single ele-
ment. Scalar operations are allowed on parallel variables that are not of the
current shape.

See Section 4.4 for a list of the situations in which a program can operate on
parallel variables that are not of the current shape.

4.1.1 Default Shape

Note that the sample program in Chapter 2 included a with statement, even
though only one shape was declared. You must include a with statement to per-
form parallel operations on parallel data, even if only one shape has been
declared.

4.1.2 Using a Shape-Valued Expression

aﬁ ) You can use a shape-valued expression instead of a shape name to specify the
* current shape. For example:

shape [16384]employees;
unsigned int:employees age, salary;

main()

{
with (shapeof (age))
salary = 200;
}

The current shape is employees, because shapeof (age) returns the shape of
the parallel variable age.

4.2 Nesting with Statements

Consider this with statement:

. with (employees)
%@ ’ add_salaries();
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where add_salaries is a function defined elsewhere in the program. Clearly,
employees remains the current shape while executing the code within
add_salaries. But what if add_salaries contains its own with statement?
The new with statement then takes effect, and the shape it specifies becomes
current. When the with statement’s scope is completed, employees once again
becomes the current shape.

You can therefore nest with statements. The current shape is determined by fol-
lowing the chain of function calls to the innermost with statement. Returning to
an outer level resets the current shape to what it was at that outer level. For
example: '

shape [16384]ShapeA, [32768]ShapeB;
int:ShapeA pl, p2;
int:ShapeB qi;

main ()

{
with (Shapead) {

pl = 6;

with (ShapeB)
ql = 12;

p2 = 18;

'}

Once the code in this example leaves the scope of the nested with statement,
Shapea once again becomes the current shape. The assignment to p2 is therefore
legal. :

The break, goto, continue, and return statements also reset the current
shape when they branch to an outer level. For example, this code is legal:

with (Shaped) {
loop:
/* C* code in ShapeA . . . */
with (ShapeB) {
/* C* code in ShapeB . . . */
goto loop;

}

‘When the goto statement is executed and the program returns to loop, ShapeA
once again becomes the current shape.
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C* does not define the behavior when a program branches into the body of a
nested with statement, however. For example, this code results in undefined
behavior:

goto loop;
with (Shapea) {
loop: /* This is wrong */

}

4.3 Initializing a Variable at Block Scope

Section 3.10 described how to initialize parallel variables; it stated that you can
initialize an automatic variable with an expression that can be evaluated at the
variable’s scope. Note that if the expression contains a parallel variable, the par-
allel variable must therefore be of the current shape. In the code below, p2 is
initialized to the values of p1; p1 must therefore be of the current shape.

'gg" shape [16384]ShapeA;
int:ShapeA pl = 6;

main ()

{
with (Shaped) {
int:ShapeA p2 = pil;
/* ... %/

4.4 Parallel Variables Not of the Current Shape

As we mentioned above, there are certain situations in which a program can op-
erate on a parallel variable that is not of the current shape. They are as follows:

® You can declare a parallel variable of a shape that is not the current shape.
You cannot initialize the parallel variable using another parallel variable,
however (because that involves performing an operation on the parallel
. ’ variable being declared).
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As we discussed in Section 4.1, a parallel variable that is not of the current
shape can be operated on if it is left-indexed by a scalar or scalars, because
it is treated as a scalar variable.

You can left-index any valid C* expression with a parallel variable of the

current shape, in order to produce an lvalue or rvalue of the current shape. -

This topic is discussed in detail in Chapter 10.

You can apply an intrinsic function like dimof and shapeof to a parallel

variable that is not of the current shape.

You can use the & operator to take the address of a paralle] variable that
is not of the current shape. See Chapter 7.

You can right-index a parallel array that is not of the current shape with
a scalar expression.

You can use the “dot” operator to select a field of a parallel structure or
union that is not of the current shape — provided that the field is not an
aggregate type (for example, another structure or union).

. You can also perform these operations (except for left-indexing by a parallel
variable) even if there is no current shape — that is, outside the scope of any
with statement.
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Using C* Operators and Data Types

C* uses all the Standard C operators, plus a few new operators of its own. In
addition, C* provides new meanings for the Standard C operators when they are
used with parallel variables. Sections 5.1-5.3 of this chapter describe C* opera-
tors and how to use them.

C* also provides a new data type, bool, which it adds to the Standard C data
types. Section 5.4 describes bools.

R ad
0

Section 5.5 discusses parallel unions.

Throughout the chapter, variables beginning with s (for example, 81, s2) are
scalar; variables beginning with p (p1, p2) are parallel.

5.1 Standard C Operators

5.1.1 With Scalar Operands

If all the operands in an operation are scalar, C* code performs exactly like Stan-
dard C code. Therefore, code like this:

int s1=0, s2;
s2 = 81 << 2;
81l++;

sl += 82;

allocates scalar variables and carries out the specified operations on them, just
as in Standard C.
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The more interesting situations occur when a parallel operand is involved in an
operation. The rest of this section considers these situations.

With a Scalar Operand and a Parallel Operand

You can use Standard C binary operators when one of the operands is parallel and
one is scalar.

Assignment with a Parallel LHS and a Scalar RHS

We have already shown examples of a parallel left-hand side (LHS) and a scalar
right-hand side (RHS) with simple assignment statements, where a scalar con-
stant is assigned to a parallel variable. For example:

Pl = 6;

In this statement, 6 is assigned to every element of the parallel variable p1. Tech-
nically, the scalar value is first promoted to a parallel value of the shape of the
parallel operand, and this parallel value is what is assigned to the elements on the
left-hand side.

Similarly,
pl = s81;

causes the scalar variable s1 to be promoted to a paralle] variable, and its value
is assigned to every element of paralle] variable p1. Thus, a scalar-to-parallel
assignment produces a parallel result; see Figure 14.
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pl = 81;

81 18

\ 0 1 2 3 n

May 1993

Figure 14. Promotion of a scalar variable to a parallel variable,

Other binary operators work in the same way. For example,
pl + sl

adds the value of s1 to each element of p1.
pl == gl

tests each element of p1 for equality to the value of s1. For each element, it
returns 1 if the values are equal, 0 if they are not equal.

pl << sl

shifts the value of each element of p1 to the left by the number of bits given by
the value of s1.

(p1 > 2) && (s1 == 4)

for each element of p1, returns 1 if p1 is greater than 2 and s1 equals 4; other-
wise the expression returns O for that element. See Chapter 6 for a further
discussion of the && operator when one or both of its operands is parallel.

Assignment with a Scalar LHS and a Parallel RHS

In an assignment statement, promotion occurs only when the scalar variable is
on the right-hand side and the parallel variable is on the left-hand side. A scalar
variable on the left-hand side is not promoted, and this statement generates a
compile-time error:

Copyright © 1990-1993 Thinking Machines Corporation



You can, however, explicitly demote the parallel variable to a scalar variable, by

sl = pi;

/* This is wrong */

casting the parallel variable to the type of the scalar variable. For example:

(Parallel-to-scalar casts are discussed in more detail in Section 9.6.4.) But what
value does C* assign, when the parallel variable could have thousands of differ-

ent

In the case of a simple parallel-to-scalar assignment, with the paralle]l variable
cast to the type of the scalar, C* simply chooses one value of the parallel variable
and assigns that value to the scalar variable; see Figure 15. The value that is cho-

int s1;
int:ShapeA pl;

sl = (int)pl; /* This works */

values?

sen is defined by the implementation.

81 = (int)p1;

sl

47

pl

18

47

12

95

64

What is the point of obtaining the value of an element of a parallel variable, if
the language doesn’t specify which value it will be? One use of demoting a paral-
lel variable to a scalar is to cycle through all elements of a parallel variable and
operate on each in turn individually; Chapter 6 has an example of this.

Note that the issues discussed here do not affect a statement like this;

Figure 15. Selection of a value in a parallel-to-scalar assignment.

sl = [2]p1;

May 1993
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This is a scalar operation. In it, an individual element of p1 has been selected by
using the left index [2]. Since only one element is selected, the value of that
element can be assigned to s1 without a problem. '

81 = [2]1p1;

8l 12

pl 18 47 12 95 cee 64

Figure 16. Assignment of a single element of a parallel variable to a scalar variable.

5.1.3

&2
-

May 1993

The C compound assignment operators (for example, += and -=) have a special
use with a parallel RHS and a scalar LHS; they are discussed in Section 5.3.

With Two Parallel Operands

Standard binary C operators can work with two parallel operands, if both are of
the current shape. For example,

P2 = pl;

assigns the value in each element of p1 to the element of p2 that is at the same
position — that is, to the corresponding element of p2; see Figure 17.

Copyright © 1990-1993 Thinking Machines Corporation



48

C* Programming Guide

P2 = pl;

pl 18 | 47 12 95 ces 64

p2 18 | 47 12 95 oo 64

5.14

Figure 17, Assignment of a parallel variable to a parallel variable.

pl * p2
multiplies each element of p1 by the corresponding element of p2.
pl >= p2

returns, for each element of p1, 1 if it is greater than or equal to the correspond-
ing element of p2, and 0 if it is not.

(p1 > 2) || (p2 < 4) ~7

returns, for each element, 1 if p1 is greater than 2 or p2 is less than 4, and 0
otherwise. Both operands are evaluated if either is parallel. See Section 6.7, how-
ever, for a further discussion of this operator and the && operator.

Unary Operators for Parallel Variables

Standard C unary operators can be applied to parallel variables. For example,
pl++

increments the value in every element of the parallel variable p1.

'pl

~ yields the logical negation of each element of p1. If the value of the element is

0, the expression returns 1; if the value of the element is nonzero, the expression
returns 0.
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The Conditional Expression

The ternary conditional expression ?: operates in slightly different ways de-
pending on the mix of parallel and scalar variables in the expression.

For example, in this statement:
pl = (sl < 5) ? p2 : p3;

the first operand is scalar, and the other two operands are parallel. The interpreta-
tion of this statement is relatively straightforward: if the scalar variable s1 is less
than 5, the value in each element of the parallel variable p2 is assigned to the
corresponding element of p1; if s1 is 5 or greater, the value in each element of
p3 is assigned to p1. All the parallel variables must be of the current shape.

In this statement,
Pl = (s1 < 5) ? p2 : s2;

the first operand and one of the other operands are scaiéx, In this case, 82 is pro-
moted to a parallel variable of the current shape, and the expression is evaluated
in the same way as the previous example.

What happens if the first operand is parallel? For example:
pl = (p2z < 5) ? p3 : p4;

In this case, each element of p2 is evaluated separately. If the value in p2 is less
than 5 in a particular element, the value of p3 is assigned to p1 for the corre-
sponding element. Otherwise, the value of p4 is assigned to p1. Figure 18 gives
an example of this; the arrows in the figure show examples of the data move-
ment, based on the value of p2.

Copyright © 1990-1993 Thinking Machines Corporation



50

C* Programming Guide

pl = (p2 < 5) ? pP3 : p4;

0 1 2 3 n

p2 | 3| 4| 5| 6 | |7

p3 |9 [10]| 11|12 | « | 13

p1 9 [ 10] 23| 24 ...st

5.2

5.2.1

Figure 18. Use of the conditional operator with parallel variables.

If either or both of the operands (other than the first) were scalar in this example,
they would be promoted to parallel in the current shape, and the expression
would be evaluated in the same way.

Both operands are evaluated if the condition is parallel.

See'Section 6.7 for a further discussion of this operator.

(-

New C* Operators

C* adds several new operators to Standard C.

The <? and >? Operators

The <? and >? operators provide, respectively, the minimum and maximum of
two expressions. These operators are typically expressed as macros in standard
C. For example, the C macro

( ((a) < (b)) ? (a) : (b))

_ May 1993
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is similar to

a <? b;
in C*, except that C* evaluates the operands only once.

There are also assignment operator versions of <? and >?. For example,
sl >?= 82;

assigns the value of s2 to s1 if the value is greater than the value of s1; other-
wise s1 is unchanged.

The minimum and maximum operators follow Standard C rules for type conver-
sions and comipatibility. For example, if one operand is a £1loat and the other
is an int, the int is promoted to a £1oat. The precedence and associativity of
<? and >? is the same as for the binary relational operators in Standard C.

These operators can be used with parallel as well as scalar variables. For
example,

pl <?= p2;

assigns the lesser of p1 and p2 to p1, for every pair of corresponding elements
of these parallel variables.

The minimum and maximum operators are discussed further in Section 5.3.

The %% Operator

The new %% operator provides the modulus of its operands. It is patterned after
the Standard C % operator; for example, it has the same precedence and as-
sociativity, accepts and returns the same types, and performs the same
conversions. It also gives the same answer when both of its operands are
positive — the answer is the remainder when the first operand (the numerator)
is divided by the second operand (the denominator). For example, these state-
ments are both true:

The difference between the two occurs when one or both of the operands is nega-
tive. In that case, different implementations of % can give different answers. For
example, the sign of the answer can be either positive or negative.
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%% performs these steps when one or both of the operands is negative:

1.. It divides the first operand by the second operand. If the result is not an
integer, it converts this result to the next lower integer. For example, the
result of dividing 17 by -4 is -4.25, so %% converts this to -5, because -5
is smaller than -4.

2.. It multiplies the second operand by this result. In the above example, -5
* -4 is 20.

3.. It subtracts that result from the first operand. The answer is the result of
the operation. In our example, 17 minus 20 is -3. Therefore:

(17 %% -4) == -3

A consequence of this procedure is that the result always has the same sign as
that of the second operand. For example:

(-17 %% 4} == 3
(17 %% 4) ==
(=17 %% -4) == -1

The %% operator is discussed further in Section 10.3.2.

Reduction Operators

Standard C has several compound assignment operators, such as +=, that perform
a binary operation and assign the result to the LHS. Many of these operators can
be used with parallel variables in C* to perform reductions — that is, they reduce
the values of all elements of a parallel variable to a single scalar value. C* reduc-
tion operators provide a quick way of performing operations on all elements of
a parallel variable.

The code below presents a parallel-to-scalar reduction assignment.

#include <stdio.h>

shape [16384]employees;
unsigned int:employees salary;

main ()

{

)
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Copyright © 1990-1993 Thinking Machines Corporation

P
L 4



R

unsigned int payroll=0;

/* Initialization of salary omitted */

with (employees)
payroll += salary;

printf (”Total payroll is $%d.\n”, payroll);
}

In this code, the += operator sums the value in each element of salary and adds
this sum to the scalar variable payroll, as shown in Figure 19. Note that the
scalar variable on the left-hand side is included in the operation; that is why pay-
roll must be initialized to 0.

payroll += salary;

sum of all
salaries payroll

\o 1 2 3 4 5 16383

salary | 396 | 942 | 516 |1642]| 212 | 660 | +.. | 558

Figure 19. A reduction assignment.

5.3.1 Unary Reduction

As the sample code above shows, binary reduction operators include the left-
hand side as one of their operands, so you must initialize the variable on the
left-hand side appropriately. You can also use any of these operators as a unary
operator with a paralle] operand. We can therefore simplify the sample code by
eliminating the scalar variable and revising the print£ statement as follows:

printf (“Total weekly payroll is $%d.\n”, +=salary);
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Parallel-to-Parallel Reduction Assignment

The left-hand side of a reduction assignment can be an individual element of a
parallel variable, instead of a scalar variable. For example,

shape [16384]employees;
unsigned int:employees salary, payroll=0;

main ()
{

/* Initialization of salary omitted */

with (employees)
[0]payroll += salary;
}

declares payroll to be a parallel variable, and puts the total of the salary val-
ues into element [0] of payroll.

List of Reduction Operators

Table 1 lists the C* reduction operators. All can be used for parallel-to-scalar
reduction assignment, parallel-to-parallel reduction assignment, and unary re-
duction.

Table 1. Reduction operators.

Operator Meaning

+= Sum of values of parallel variable elements

-= Negative of the sum of values

*= Product of values (CM-5 C* only)

/= Reciprocal of the product of values (CM-5 C* only)
&= Bitwise AND of values

A= Bitwise XOR of values

= Bitwise OR of values

<?= Minimum of values

>?= Maximum of values
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Note that simple parallel-to-scalar assignment using a cast is also a form of re-
duction assignment; see Section 5.1.2.

Note also that the C compound operators %=, <<=, and >>= cannot be used as C*
reduction assignment operators.

We have already discussed the += operator; now let’s look at the other reduction
operators.

The —= Reduction Operator

When used as a binary reduction operator, -= subtracts the sum of the parallel
RHS’s values from the scalar LHS, and assigns the result to the LHS. Therefore,

sl -= pl;

is equivalent to:

sl = (s1 - (+=pl));

Initialize the scalar LHS to O to obtain the negative of the sum of the parallel
variable’s values. Or use ~= as a unary reduction operator:

sl = (-=pl);

The *= and /= Reduction Operators (CM-5 C* Only)

When used as a binary reduction operator, *= multiplies the values of the ele-
ments of the parallel RHS and the value of the scalar LHS and assigns the value to
the LHS. As a unary operator, it returns the product of the active elements of the
parallel variable.

As a binary reduction operator, /= divides the value of the scalar LHS by the
product of the parallel RHS’s values and assigns this value to the LHS. When /=
is used as a unary operator, it returns the reciprocal of the product of the active
parallel values.

These operators are not available in the CM-200 implementation of C*.
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Minimum and Maximum Reduction Operators

The <?= and >?= operators can be used as unary operators to obtain the mini-
mum and maximum values in all elements of a parallel variable. To find out the
lowest and highest salaries in the parallel variable salary, for example, add
these print£ statements to the code example shown on page 52:

printf (“The lowest salary is $%d.\n”, <?=salary);
printf (”The highest salary is $%d.\n”, >?=salary);

Note once again that, when used as binary operators, <?= and >?= include the
left-hand side as an operator. To assign the lowest value of a parallel variable to
a scalar variable, therefore,

sl <?= pl;

might not work, since s1 might be the lowest value. Instead, use <?= as a unary
operator, and use = to assign the result to the scalar variable. For example:

sl = <?=pl;

Bitwise Heduction Operators

The bitwise reduction aoperators mask all elements of a parallel variable, as de-
scribed in the subsections below.

Bitwise OR

The | = operator performs a bitwise OR of all elements of a parallel variable. For
example, in this statement:

sl |= pl;

all elements of p1 are first bitwise OR’d; if a particular bit is a 1 in any element,
that bit is a 1 in the result. This result is then bitwise OR’d with s1, and the result
is assigned to s1.

Bitwise OR is particularly useful in testing if any elements of a parallel variable
meet a condition. The 1£ statement in C* works in the same way as the 1f state-
ment in Standard C: If the condition expression evaluates to 0, then the statement
following is not executed; if the condition expression is nonzero, the statement
is executed. In this code,
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if (|=(p1 > 5))
p2 = 10;

if there are any elements of p1 greater than 5, the condition expression is non-
zero, and 10 is assigned to each element of p2. If there are no elements of p1
greater than 5, the bitwise OR evaluates to 0, and the following statement is not
executed.

Bitwise AND

In a bitwise AND, if a particular bit is a 0 in any element of the specified parallel
variable, that bit is a 0 in the result. Bitwise AND provides a way to test whether
all elements of a parallel variable meet a condition. In this code:

if (&=(pl > 5))
p2 = 10;

each element of p2 is set to 10 only if all elements of p1 have values greater
than 5.

Bitwise Exclusive OR

You can view the bitwise exclusive OR operator as operating pair-wise on ele-
ments of a parallel variable. For example, if three parallel bit-fields each contain
a 1, bitwise exclusive OR first operates on two of them: the two 1 bits yield a 0
bit. This 0 bit is then exclusive OR’d with the remaining 1 bit, and the result is
a 1 bit. In general, the result of a bitwise exclusive OR operation is 1 if the corre-
sponding bit is 1 in an odd number of elements; it is 0 if the corresponding bit
is 1 in an even number of elements. Note that in a reduction assignment the scalar
LHS is included in this calculation.

Reduction Assignment Operators with a Parallel LHS
Reduction assignment operators can be used with a parallel LHS when the paral-

lel variable is left-indexed with a parallel subscript. This topic is discussed in
Section 10.1.5.
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Precedence of Reduction Operators

Unary reduction operators have the same precedence as the unary operators in
Standard C. '

The precedence and associativity of the binary reduction operators is the same
as for the compound assignment operators in Standard C.

The bool Data Type

The bool is a new unsigned integral data type in C*. The actual size and align-
ment of a bool are implementation-dependent:

®* In the CM-200 implementation, a parallel bool occupies one bit of
memory and is aligned on a bit boundary; a scalar bool occupies one byte
of memory on the front end. This takes advantage of the CM-200’s align-
ment of data on bit, rather than byte, boundaries.

® In the CM-5 implementation, a bool occupies one byte of storage, both
on the partition manager and on the nodes, and is aligned on a byte

boundary.

A bool behaves as a single-bit quantity, however, no matter what its actual size
is. Typically, bools are used to test conditions.

When you cast an expression of a larger data type to a bool, or assign a variable
of a larger data type to a bool, the expression has logical (rather than arithmetic)
behavior. That is, if the value of the larger data type is 0, O is the result; if the
value is non-zero, 1 is the result. Thus:

int i=0, j=4;
printf ("%d\n”, (bool)i); /* prints 70”7 */
printf ("%d\n”, (bool)j); /* prints "1” */

Also note this behavior:

int i, j=1, k=1;
bool:current b;
i=9 +k; /* i=2 */
b=3+k; /*b=1*/
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All elements of b are assigned the value 1 because the value of the expression
(3 + k) is non-zero.

A bool, like a char, is promoted to an int when used as an operand of many
operators. Thus, performing operations on bools sometimes can be slower than
performing the same operations on larger data types. The CM-200 implementa-
tion, however, avoids this promotion for operations using these operators: <, >,
<=, >= == 1= & |, *, <?, >?, and the assignment versions of the last five. All
these operations are performed at the precision of their operands.

The boolsizeof Operator

To obtain the exact size of a variable or data type in units of bools, use the new
C* operator boolsizeof; boolsizeof has the same precedence and
associativity as sizeof.

With a Parallel Variable or Data Type

‘When a parallel variable is used as the operand, boolsizeof returns the number
of parallel bools a single element of the variable occupies in CM memory. For
a parallel data type, boolsizeof returns the number of parallel bools that must
be allocated for a single instance of the data type. For example:

boolsizeof (int:ShapedA); /* Size in parallel bools of a
parallel int */

In CM-200 C*, a parallel bool is implemented as a bit; therefore, boolsizeof
returns 32 for this statement.

In CM-5 C*, a bool is implemented as a byte; therefore, boolsizeof returns
4. o

With a Scalar Variable or Data Type

When a scalar variable is used as the operand, boolsizeo£ returns the number
of scalar bools that the variable occupies in memory. Since a scalar bool is
stored as a byte in both CM-200 and CM-5 C*, boolsizeof gives the same
result as the sizeof operator for both implementations when applied to a scalar

operand. For example,
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boolsizeof (int); /* Size in scalar bools of a scalar int */

returns 4 for both implementations.

Parallel Unions

You can create parallel unions. Like parallel structures, they can only contain
scalar variables. For example, this code:

union ptype {
int i;
float £;
};
union ptype:ShapeA pl;

defines a parallel variable p1 of shape 8hapea and of the union type ptype.
This statement initializes p1 as an integer:

pl.i = 50;

Each element of p1 is an int containing the value 50.

This statement initializes p1 as a £1oat containing the value 89.7:
pl.f = 89.7;

Unions can also appear within structures, as in Standard C.

Limitations

In CM-200 C*, you cannot use an initializer to initialize a parallel union or any
object containing a parallel union.

In addition, the following are language restrictions:
®* You cannot assign a scalar union to a parallel union.

= You cannot promote a scalar union to be parallel (for example, by a scalar-
to-paralle] cast; see Section 9.6).

oo
)
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®  You cannot demote a parallel union to be scalar.

These restrictions are not present in CM-5 C*, but taking advantage of this will
make your program nonportable.

5.6 Parallel Enumeration Type (CM-5 C* Only)

CM-5 C* supports parallel enums. For example,

enum color { red, blue, green };
enum color:ShapeA parallel color;

declares the paralle] variable parallel_color to be of the enumeration type
color. You can then assign a value to parallel_color as follows:

parallel color = red;

This assigns the value red to every element of the parallel variable paral-
lel_color.

g’
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In Chapter 4, we discussed how to use the with statement to select a current
shape. Once there is a current shape, a program can perform operations on paral-
lel variables that have been declared to be of that shape.

But what if you want an operation to be performed only on certain elements of
a parallel variable? For example, you have a database containing the physical
characteristics of a population, and you want to know the average height of peo-
ple who weigh over 150 pounds.

To do this, specify which positions are active by using a where statement, which
C* has added to Standard C. Code in the body of a where statement operates
only on elements in active positions. Using where to specify active positions is
known as setting the context.

The where Statement

When a with statement first selects a shape, all positions of that shape are active;
code in the body of the with statement operates on every element of a parallel
variable. A where statement selects a subset of these positions to remain active.
For example, this code:

with (population)
where (weight > 150.0) {
VA Y
}

selects only those positions of shape population in which the value of parallel
variable weight is greater than 150. (This assumes that the elements of weight
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have previously been initialized to some values.) Parallel code in the body of the
where statement applies only to those positions. Figure 20 shows the effect of
the where statement.

where (weight > 150.0)

0 1 2 3 4 5 32767

7 L/
wedght 4644094 170 | 212 [446 222 | *++ | 151

Figure 20. Using where to restrict the context.

In the figure, positions 0, 1, and 4 become inactive in the body of the where
statement; positions 2, 3, 5, and 32767, all of which have weights over 150, re-
main active.

The controlling expression that where evaluates to set the context must operate
on a parallel operand of the current shape. (Other controlling expressions — for
example, the while and 1f statements — operate only on scalar variables.) Like
other controlling expressions, it evaluates to 0 or nonzero, but it does so sepa-
rately for each parallel variable element that is currently active.

The code below calculates the average height of people weighing over 150
pounds (assuming that the values of height and weight have been initialized):

shape [32768]population;
float:population weight, height;
unsigned int:population count;
float avg_height;

main ()

{
/* Code to initialize height and weight omitted. */

with (population) {
count = 1;
where (weight > 150.0)
avg_height = (+=height / +=count);
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}

NOTE: There is a slightly easier way of obtaining the number of active positions
than the one shown in this code fragment; it involves a scalar-to-parallel cast.
For example,

(int:population) 1

promotes 1 to a parallel variable of shape population. Using the += operator
on this variable produces the number of active positions. Scalar-to-parallel casts
are discussed in Section 9.6.1.

Like the with statement, a where statement can include scalar as well as parallel
code within its body, and the same restrictions apply to operating on parallel vari-
ables that are not of the current shape. See Section 6.5 for a discussion of what
happens to scalar and parallel code when a where statement causes no positions
to remain active.

The context set by the where statement remains in effect for any procedures

- called within its body. Once the body of the where statement has been exited,

however, the context is reset to what it was before the where statement. For ex-
ample, if we add two statements to the code fragment above:

with (population) {
float avg_weight;
count = 1;
where (weight > 150.0)
avg_height = (+=height / +=count);
avg_weight = (+=weight / +=count);

}

avg_weight is assigned the average weight for all positions of shape popula-
tion, not just for the positions where weight is greater than 150.

The else Clause

Like 1£ statements in standard C, where statements can include an else clause.
The else following an 1f says: Perform the following operations if the 1£ con-
dition is not met. The else following a where says: Perform the following
operations on positions that were made inactive by the where condition. It “turns
on” all of the positions that were “turned off” by the where condition, and turns
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off all the positions that the where condition left on. Figure 21 shows the effect
of an else clause on the set of active positions in Figure 20.

vy [
welight | 148 109// % 116 ”/xg

Figure 21. The effect of else on the context shown in Figure 20.

The code below calculates separate average heights for those weighing more
than 150 pounds, and for those weighing 150 pounds or less:

shape [32768]population;
float:population weight, height;

unsigned int:population count;

float avg_height heavy, avg_height_light;

main ()
{
with (population) f{
count = 1;
where (weight > 150.0)
avg_height _heavy = (+=height / +=count);
else
avg_height light = (+=height / +=count);

6.1.2 The where Statement and positionsof

Using where to restrict the context does not affect the value returned by the
positionsof intrinsic function. positionsof returns the total number of po-
sitions in a shape, not the number of active positions. See Section 9.6.1 for a
method of determining the number of active positions.
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The where Statement and Parallel-to-Scalar Assignment

In Chapter 5 we discussed assigning a parallel variable to a scalar variable: you
must cast the parallel variable to the type of the scalar variable. The operation
then chooses (in an implementation-defined way) one value of the parallel vari-
able and assigns it to the scalar variable. If a where statement restricts the
context, however, the value chosen is from one of the active positions.

The where Statement and Scalar Code

As we noted above, you can include scalar code within the scope of a where
statement. So, for example, this code is legal:

shape [32768]lpopulation;
float:population weight;
float avg_height;

main{()
{
with (population) {
where (weight > 150.0)
avg_height = 0;

}

Recall that an element of a parallel variable is considered to be scalar. That
means you can perform operations on an element even if its position is inactive.
For example, if position 0 becomes inactive when we choose positions where
weight is over 150, we can still do this:

shape [32768]population;
float:population weight;
unsigned int:population count:;

main()
{
with (population) {

count = 1;
where (weight > 150.0) {
[0lweight = 225; /* These are all legal. */

[0lweight = [1]}weight;
[0]lcount += count;
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}

Note the final statement in this code fragment. In it, the values of the active ele-
ments of count: are summed; this sum does not include the value of [0] count,
because position [0] became inactive as a result of the where statement. How-
ever, the result of the sum can be placed in [0] count, because [0] count is
scalar. Thus:

® You can read from or write to an individual parallel variable element in an
inactive position.

® An element in an inactive position is not included in operations on the
parallel variable as a whole.

Nesting where and with Statements

Nesting where Statements

You can nest where statements. The effect is to continually shrink the set of ac-
tive positions. For example, we might want to calculate average heights
separately for males and females weighing over 150 pounds in the population
database. Let’s add a parallel variable called sex, therefore, and assume that it
has been initialized: O for females and 1 for males. The code below would then
produce the desired results.

shape [32768]population;

float:population weight, height;

unsigned int:population count, sex;

float avg_male_height, avg_female height;

main()
{
with (population) {
count = 1;
where (weight > 150.0) {
where (sex)
avg_male height = (+=height / +=count);
else
avg_female_height = (+=height / +=count);
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Copyright © 1990-1993 Thinking Machines Corporation

P 1 N

()

:

)



§
.
H
{
H
i
H
B

S T A B ek b 3

Ay

6.3.2 Nesting with Statements

It is also possible to choose another shape within the body of a where statement.
For example:

shape [32768)population, [16384]employees;
int:employees salary;

int payroll;

float:population weight, height;

unsigned int:population count, sex;

float avg_male height, avg_female height;

main()
{
with (population) {
count = 1;
where (weight > 150.0) {
where (sex)
avg_male _height = (+=height / +=count);
with (employees)
payroll += salary;

-}

Since each shape has a different set of positions, the context established by a
where statement for one shape has no effect on the context of expressions in
another shape. Therefore, the statement

payroll += salary;

in the code example above uses the entire set of positions of shape employees.
Of course, we could add another where statement to set the context for the
nested with statement. ‘

Once control leaves the body of the nested with statement, the context returns
to whatever it was before the with statement was executed. For example:

with (population) {
count = 1;
where (weight > 150.0)
where (sex) {
avg _male_height = (+=height / +=count);
with (employees)
payroll += salary;

else

May 1993 )
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avg_female_height = (+=height / +=count);
}

When population becomes the current shape for the second time, the context
is once again the positions where weight is greater than 150 and sex is 0.

With nesting, it is therefore possible to switch back and forth between shapes and
maintain separate contexts for each.

The break, goto, continue, and return Statements

Section 4.2 described the behavior of break, goto, continue, and return
statements in nested with statements. They behave similarly for nested whexre
statements. Specifically:

® Branching to an outer-level where statement resets the context to what it
was at that level.

®* The behavior of branching into a nested where statement is not defined.
Don’t do it.

The behavior of functions that contain nested where statements is discussed in
Section 8.1.2.

The everywhere Statement

A where statement can never increase the number of active positions for a given
shape; nesting where statements has the effect of creating smaller and smaller
subsets of the original set of active positions. C* does, however, provide an
everywhere statement that allows operations on all positions of the current
shape, no matter what context has been set by previous where statements.

For example, in this code:
shape [32768]lpopulation;
float:population weight, height;
" unsigned int:population count, sex;

float avg_male_height, avg_female_height, avg_height:;

main()
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with (population) {
count = 1;
where (weight > 150.0) {
where (sex)
avg_male height = (+=height / +=count);
else
avg_female_height = (+=height / +=count);

everywhere
avg_height = (+=height / +=count);

}

the scalar variable avg_height is assigned the average height for all positions
of shape population, even though this average is calculated within the body
of a where statement that deactivates some positions of population.

After the everywhere statement, the context returns to what it was before
everywhere was called. In this case, once again only positions where weight
is greater than 150 are active.

A 4

Note that if avg_height had been calculated after the body of the where state-
ment, the everywhere statement would not have been needed, since the context
reverts to what it was before the where statement. In this case, all positions of
shape population become active once again.

As with the where statement, branching from an everywhere statement to an
outer level via a break, goto, continue, or return statement resets the con-
text to what it was at the outer level. The behavior of branching into an
everywhere statement is not defined.

6.5 When There Are No Active Positions

What happens when the controlling expression of the where statement leaves no
positions active? Consider the situation shown in Figure 22.
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welght | 148109 | 100 98 | 116 | 122 | ««s | 140

Figure 22. A shape where all weights are less than 150.

If population is initialized entirely with values of 150 and below, the follow-
ing code makes all positions inactive, since no position has weight greater than
150:

with (population)
where (weight > 150.0) {
/* . */
}

Code is still executed in this situation, but an operation on a parallel variable of
the current shape has no effect. For example,

weight++;

does not increment any of the values of weight, because no elements of weight
are active.

But note that operations on individual elements do have results, since they are
scalar. For example,

[0lweight = 225;
assigns 225 to element [0] of weight, even though no positions are active.

The result of a parallel-to-scalar assignment using = is undefined when no posi-
tions are active.

The results of reduction assignment operations are discussed below.
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When There Is a Reduction Assignment Operator

Unary Reduction Operators

Consider the following code fragment, where maximum is a scalar variable, and
weight is a parallel variable:

where (weight > 150.0)
maximum = (>?=weight);

If there are no active positions, what gets assigned to maximum?

C* provides default values for unary reduction operators when there are no ac-
tive positions. These values are listed in Table 2.

The values in Table 2 are basically identities for the operations. For example, the
result of a += operation (when no positions are active) added to the result of an-
other += operation gives the result of the other operation.

Table 2. Values of unary reduction operators when there are

no active positions.
Unary Reduction
Operator Value
= 0
- 0
*m 1
/= 1
&= ~0 (all one bits)
Am -0
|= -0
<?= maximum value representable
>7= ~ minimum value representable

Binary Reduction Assignment Operators

Recall that the left-hand side is included in binary reduction assignments. When
there are no active positions, and a binary reduction assignment operator is used,
the LHS remains unchanged.
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6.5.2 Preventing Code from Executing

Of course, you might not want scalar code, or code in another shape, to execute
if there are no positions active. To keep the code from executing, use an 1£ state-
ment with a bitwise OR reduction operator to conditionalize the entire where
statement. For example:

if (|=(weight > 150.0))
where (weight > 150.0) {
float avg_height = 0;
/* ... */
}

In this code fragment, the scalar variable avg_height is declared and initialized
only if there are any positions with weight greater than 150. See Section 5.3.7
for a discussion of using the bitwise OR reduction operator in an 1£ condition.

If the condition in the 1f statement has side effects, more code is required to
ensure that the condition is evaluated only once. Follow these steps:

1.. Create a temporary parallel variable of the current shape.

2.. In the 1f condition, assign to this temporary variable the results of the
parallel expression you would otherwise have evaluated in the where
statement, and perform a bitwise OR reduction of the temporary variable.

3.. Have where evaluate the temporary variable.

For example:

with (population) {
unsigned int:population temporary = 0;
if (|=(temporary = (++weight > 150.0)))
where (temporary) {
float avg_height = 0;
/* .. 0%/

May 1993
Copyright © 1990-1993 Thinking Machines Corporation

()

§

)



6.6 Looping through All Positions

Some of the C* features we have discussed so far can be used to loop throngh
all positions of a shape, allowing operations to be performed on each position
separately.

For example, consider a database initialized as shown in Figure 23. Note that
each position has a unique identifier, case_no.

shape population
0 1 2 3 4 5 32767

case_no 0 1 2 3 4 5 ves [32767

weight 1481091100 212 | 200} 122 ] ... | 140

height 62 | 58 | 60 | 72 | 75 | 68 | «se 66

Figure 23. A database.

The code below picks a case of shape population, prints the weight and height
of its corresponding elements, then picks another case, until all cases have been

chosen.
#include <stdio.h>

shape [32768)population;
7 unsigned int:population case_no, weight, height;
unsigned int index;

/* Code to initialize parallel variables omitted. */

main()
{
with (population) {
bool:population active;
active = 1;
while (|= active) {
% ) where (active) {
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index = (unsigned int)case_no;
where (index == case_no) {
printf (“Height is %d;
weight is %d.\n”,
[index]height, [index]weight);
active = 0;

}
Note these points about the program:

® In this program, a while loop with a bitwise OR reduction controls the
selection of positions.

= The = operator chooses a value of case_no and stores it in index (note
the use of the cast to explicitly demote the parallel variable to a scalar vari-
able).

® The inner where expression then selects the position that contains this
value for case_no. (There will be only one, because each value of ’
case_no is unique.) Since each value of case_no corresponds to the co- ( 3
ordinate of its position, we can use that value (now assigned to index) as
a left index for the other parallel variables in order to choose an element
of them for printing.

= At the end of the where statement, active is set to O for the active posi-
tion, turning it off for the next iteration of the loop. When all the positions
have been selected, all the positions will have been turned off. At this
point the controlling expression of the while loop evaluates to false, and
the program completes. '

NOTE: A more efficient way of doing this is to use the pcoord function, which
is described in Section 10.2.

(¥
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Context and the ||, &&, and ?: Operators

|l and &&

The | | and && operators perform implicit contextualization when one or both of
their operands are parallel. (Recall that if one operand is parallel and the other
is scalar, the scalar operand is promoted to parallel.)

Consider this statement, in which all variables are parallel:
p3 = (Pl > 5) && (p2++);

Since at least one of the && operands is parallel, we get the parallel version of
the operator. This statement does two things:

= First, in each position, it assigns a 1 to the corresponding element of p3
if both operands evaluate to nonzero (“TRUE™), and assigns a 0 otherwise.

® Second, it increments p2 in each position where p1 is greater than
5 — that is, where the left operand evaluates to TRUE. In positions where
the left operand evaluates to 0, p2 is unchanged.

()
’ Figure 24 shows how the statement works with some sample values.
p3 = (p1 > 5) && (p2++);
0 1 2 3 4 32767
p1 1| 7| -2]|13| 6| . 8
Before
p2 1| 20| 4|5 ...]10
T p3 ol 1| o 1| 1] ...|]o
; After
p2 11 3] 0] 5| s 1
;

May 1993

Figure 24. An example of the && operator with parallel operands.
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Note that the left operand of the && operator in this example effectively sets the
context for the right operand. This is the “implicit contextualization” mentioned
at the beginning of the section. That is, the operation above is equivalent to

where (pl > 5)
p2++;

except that the operation additionally returns the result (0 or 1) of the logical
AND in each position.

After the operation, the context returns to what it was before the operator was
called.

The || operator works similarly when one or both of its operands are paral-
lel — except that the context for the right operand consists of those positions that
evaluate to O for the left operand. In addition, the operator returns a 1 if either
operand evaluates to TRUE, and 0 otherwise. For example,

p3 = (pl > 5) || (p2++);
gives the results shown in Figure 25.
p3 = (p1 > 5) || (p2++);
0 1 2 3 4 32767
pl 1| 7| -2|13] 6] ... 8
Before

p2 1l 2|0} 4| 5] ..]0

p3 120 1| 1] .. 1

After

Figure 25. An example of the | | operator with parallel operands.

Notice the difference in the results between Figure 24 and Figure 25:
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* With the | | operator, p2 is incremented only in the positions where p1 is
not greater than 5.

® With | [, the corresponding element of p3 receives the logical OR of the
operands for each position.

The ?: Operator

The ?: operator provides implicit contextualization of its second and third oper-
ands when its first operand is parallel. For example, when p1 is parallel,

(Pl > 5) ? p2++ : p3++;
is equivalent to:

where (p1 > 5)
p2++;

else
p3++;

See Section 5.1.5 for an example and for further discussion of this operator.

Appendix A discusses some efficiency considerations for CM-200 C* regarding
C* operators that perform implicit contextualization. See the CM-5 C* Perfor-
mance Guide for similar information for CM-5 C*.
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Chapter 7

Pointers

C* has three kinds of pointers:
® the Standard C pointer
' ascalar pointer to a shape
® a scalar pointer to a parallel variable

As in C, C* pointers are fast and powerful.

7.1 Scalar-to-Scalar Pointers

C* supports the Standard C pointer. For example,
int *ptr;

declares ptr to be a scalar pointer to an int. If s1 is a scalar variable,
ptr = &sl;

puts the address of s1 in ptr, and
s2 = *ptr;

puts the value of s1 into s2.
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Scalar Pointers to Shapes

C* introduces a new kind of scalar pointer that points to a shape. For example,
shape *ptr;

declares the scalar variable ptr to be a pointer to a shape, and
ptr = &ShapeA;

makes ptr point to ShapeA.

A dereferenced pointer to a shape can be used as a shape-valued expression. For
example, if ptr points to Shapea, .

with (*ptr)
makes ShapeA the current shape.

Scalar pointers to shapes are discussed in more detail in Section 9.1.1, when we
introduce arrays of shapes.

Scalar Pointers to Parallel Variables

C* introduces a new kind of scalar pointer that points to a parallel variable. For
example,

int:ShapeA *ptr;
declares a scalar pointer ptr that points to a parallel int of shape ShapeA.

How can a scalar pointer point to a parallel variable? Clearly the mechanism
must be different from that used in C pointers, which store the memory address
of the object to which it points; each element of a parallel variable would have
a different address. In fact, a pointer to a parallel variable in C* does not store
a physical address, but a value that uniquely identifies the entire set of elements
of the parallel variable.

Note that scalar pointers to parallel variables aren’t necessarily the same size as
scalar pointers to scalar values. However, they can still be operated on by the
usual C pointer operations: for example, addition or subtraction with scalar val-
ues, subtraction of pointers, and comparison to zero. See Sections 7.3.2 and
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7.3.3. See also Appendix C for a more in-depth discussion of the implementation
of scalar pointers to parallel variables in CM-5 C*.

If p1 is a parallel variable of shape Shapea,
ptr = &pl;

stores this value for p1 in the scalar pointer ptx. p1 need not be of the current

shape.
ptr = &pl; [ active
/) inactive
ptr &pl

Figure 26. A scalar-to-parallel pointer.
Once the above statement has been executed, a program can reference the paral-
lel variable p1 via the pointer stored in ptr. For example,
(*ptz) ++;

increments the value in each active element of p1, as shown in Figure 27.
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(*ptx) ++; D active

ptr &pl

1
L7, .
p1 19 // 56 | 16 | ... 7

Figure 27. Dereferencing the scalar-to-parallel pointer shown in Figure 26.

If slisa scalar variable,
sl += *ptr;
sums the values of the active elements of p1, and adds the result to s1.

The constraints that apply to dealing directly with a parallel variable also apply
to dealing with it via a scalar pointer. For example, ShapeA must be the current
~ shape for the above statement to be executed.

7.3.1 Alternative Declaration Syntax Not Allowed

Recall from Chapter 3 that there are two ways of declaring a parallel variable:
int:ShapeA pl;

and
int pl:ShapeA;

C* does not allow the latter syntax for declaring scalar-to-parallel pointers,
however:

int *ptr:ShapeA; /* This is wrong */

In this case, the compiler interprets the shape name as applying to the pointer,
and parallel-to-scalar pointers do not exist in the language.
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Arrays

The close relationship between arrays and pointers is maintained in C*. For
example,

int:ShapeA A1[40];

declares a parallel array of 40 ints of shape Shapea, and A1 points to the first
element of the array. (Recall that an element of a parallel array is a parallel
variable.)

Pointer Arithmetic

C* allows arithmetic on scalar pointers to parallel variables; it is similar to the
Standard C arithmetic on pointers to scalar variables. For example, given these
declarations,

shape [65536]ShapeA;
int:ShapeA Al1[40], *ptrl, *ptr2;

we can do the following:

ptrl = &A1[7];
ptr2 = ptrl + 2;
printf (*%d\n”, ptrx2 - ptrl);

= The first statement sets ptx1 equal to the address of the eighth element
of the parallel array.

®» The second statement puts the address of the tenth element of the array
into ptra.

® The printf statement prints 2, the result of subtracting ptra from ptr2.

Note that these statements do not have to be within the body of a with statement,
since the pointers are scalar variables.

As described above, we don’t need to declare separate pointers into the array. We
can also do this:

shape [65536] ShapeA;
int:ShapeA A1{40], p2, p3;
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main ()
{
with (ShapeA) {
p2 = *(Al + 9);
p3 = A1[9]; /* These two statements are
equivalent. */

}

Each paralle] variable element of both p2 and p3 is assigned the value of the
corresponding parallel variable element of the tenth array element of A1.

Here is something we cant do:

shape [65536]Shapea;
int:ShapeA A1[40], p2, p3, *ptrl, *ptr2;

ptrl = &A1[7];
ptr2 = ptrl + p2; /* This is wrong */
p3 = *(ptrl / p2); /* This is wrong too */

It is illegal to perform arithmetic operations with a parallel variable and a scalar-
to-parallel pointer as operands — except as discussed below.

7.3.4 Parallel Indexes into Parallel Arrays

C* lets you use a parallel index into a parallel array. The result is essentially a
new parallel variable that contains elements from the existing parallel variables
that make up the array. This is referred to as parallel right indexing.

Consider the data shown in Figure 28. A paralle] array, A, and a parallel variable,
i, have been allocated in a 1-dimensional shape, 8.
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0 1 2 3 4 n
Aol
] al1
array A fl
Al2]
Al3]
1|13} 2 0|l 1]3 2

Figure 28. A parallel array and an index parallel variable.

C* allows the expression A [1]. The expression says: In each position, use the
value of 1 as an index for choosing a parallel variable element. For example, in
position [0] the value of 1 is 3; therefore, the element of parallel variable A[3]
in that position is chosen. In position [1], the value of 1 is 2; therefore, the ele-
ment of A[2] in that position is chosen. The result is a “jagged” parallel variable
consisting of parallel variable elements taken from the different parallel variables
that make up the parallel array. Figure 29 shows the results.
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Al1]

array A

Al2]

A[3]

i} 3 2 0 1 3 2

A[i]

Figure 29. Indexing a parallel array by a parallel variable.

The values of the index parallel variable should be less than the number of paral-
lel variables in the parallel array; otherwise, the index chooses an element
outside the array, and the result is undefined. For example, if an element of 1 had
a value of 17, the result would be undefined, because 1 is indexing an array of
four parallel variables.

Adding a Parallel Variable to a Pointer to a Parallel Variable

The equivalence between arrays and pointers holds for parallel right indexing as
well. In other words, A[1] is equivalent to * (A+1) . Note that * (A+1) is a legal
example of an arithmetic operation involving a parallel variable and a scalar
pointer to a parallel variable.

You can also subtract a parallel variable from a pointer to a parallel variable. For
example, you might have a pointer point to the end of an array rather than the
beginning. You could then subtract a parallel index from that pointer to choose
parallel variable elements within the array. Once again, such an index must cause
elements to be chosen from within an array; otherwise, the result is undefined.
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Limitations

C* limits what you can do with parallel right indexing. You can dereference these
expressions, but you cannot take their address. You can add a parallel variable
to a pointer to a parallel variable, or subtract it from the pointer, but in each case
the expression is legal only if it is immediately dereferenced. (The problem is
that otherwise the expression would represent a parallel pointer to a parallel vari-
able, and this kind of pointer does not exist in the language.) Thus, given these
declarations:

shape [8192]S;
int:s A[4], i, pl1, p2, *ptr;

int s1;
these statements are legal:
pl = A[i); /* In all cases, i should index parallel
variable elements within the array */
Ali]++;

pl = *(A+i);

pl = *(ptr - 1i); /* Pointer should point into

an array */
and these statements are illegal:

sl = &(A[i]); /* Can’'t take the address */

g1 = (A+i); /* Creates invalid pointer type */

pl = ptr + p2; /* Can’t perform an operation without
dereferencing */

pl = *(ptr / 1i); /* Can only add or subtract */
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Chapter 8

Functions

C* adds support for parallel variables and shapes to Standard C functions.
Specifically:

= C* functions can take parallel variables and shapes as arguments.
= C* functions can return paralle] variables and shapes.

» C* adds a new keyword current, which you can use to specify that a
I ) variable is of the current shape.

®  C* includes a void predeclared shape name so that you can declare an
argument to be a pointer to a parallel variable of any shape.

= C* supports overloading of functions, so that (for example) functions op-
erating on scalar and on parallel data can have the same name.

} 8.1 Using Parallel Variables with Functions

8.1.1 Passing a Parallel Variable as an Argument

C* funcﬁonsacceptpataﬂelvaﬁablesasargﬁmentsonlyiftheyareofthecunem
shape. As in Standard C, variables are passed by value; but see Section 8.2 for
a discussion of passing by value versus passing by reference.

The simple function below takes a parallel variable of type int and shape
ShapeA as an argument:

—_—
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void print_sum(int:ShapeA x)
{

printf ("The sum is %d.\n”, +=x);
}

(Note that C* supports the new Standard C function prototyping, in addition to
the older method. The new method is preferred.) There is actually a better way
of writing this function; we describe it in Section 8.4.1.

If p1 is a parallel variable of type int and shape Shapea, you could call

print_sum as follows:
print_sum(pl) ;

provided that Shapea is the current shape. If Shapea were not the current shape,
passing p1 to the function would violate the rule that a program can operate only
on parallel variables of the current shape.

NOTE: If a function expects a scalar variable and you pass it a parallel variable
instead, you receive a compile-time error.

If the Parallel Variable Is Not of the Current Shape

If you want to pass a parallel variable that is not of the current shape to a func-
tion, use a pointer to the parallel variable. Note, though, that if the function is to
operate on the parallel variable, the function must include its own nested with
statement, and the parallel variable that is passed must be of that shape. For

example: '

void print_sum(int:ShapeA *x)
{
with (Shapea)
printf (”The sum is %d.\n”, +=*x);
}

If p1 is a parallel variable of type int and shape Shapea, you could call
print_sum as follows, no matter what the current shape is:

print_sum(&pl) ;

Section 8.4.2 discusses a more general way of passing parallel variables that are
not of the current shape.
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8.1.2 Returning a Parallel Variable

C* functions can return parallel values. For example, this function:

float:ShapeA increment (float:ShapeA x)
{

return (x + 1.);

}

takes as an argument a parallel variable of type £loat and shape Shapea, and
returns, for each active element of the variable, the value of the element plus 1.
Assuming that p1 and p2 are parallel floats of shape Shapea, and Shapea is the
current shape, you could call increment as follows:

p2 = increment (pl);

Note that when a function is to return a parallel variable, you must specify both
the type and the shape of the variable. The header of the function increment
could also have been written with the shape after the parameter list:

float increment (float:ShapeA x) :ShapeA

In a Nested Context
Consider a slightly different version of increment:

float:ShapeA increment if over 5(float:ShapeA x,
float:ShapeA y)
{
where (y > 5.)
return (x + 1.);

}
Figure 30 shows some sample results of a call to this new function.

with (Shapea)
p3 = increment_if over_5(pl, p2);
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p3 = increment_ if_over_5(p1, p2):;

shape Shapea

0 1 2 3 4 5 n

pt |o.o|1.0|/2.0[/3.0|4.0|5.0]|... | 6.0

P2 5.414.9(4.2]1.2(7.8}6.1}... |1.0

p3 1.0 5.0 6.0 «0s

Figure 30. Three parallel variables after a function call.

Upon return from increment_if_over_5:

= All positions have once again become active, as we discussed in Chap-
ter 6.

® In every position where p2 is greater than 5, the corresponding element
of p3 has been assigned the value of the corresponding element of p1
plus 1.

=  The values of all other elements of p3 are undefined.

8.2 Passing by Value and Passing by Reference

You can pass parallel variables by value or by reference, just as you can scalar
variables. However, in deciding whether to pass by value or pass by reference,
you must take into account the effect of inactive positions.

When you pass a variable by value, the compiler makes a copy of it for use in
the function. If the variable is parallel, and positions are inactive, elements in
those positions have undefined values in the copy. This is not a problem if the
function does not operate on the inactive positions; if it does, however, passing
by value can produce unexpected results. The function can operate on the inac-
tive positions in these situations:
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= If the function contains an everywhere statement to widen the context,
and then operates on the parallel variable you pass.

= If it operates on an individual element of a parallel variable; see Section
6.2. :

= If it performs send or get operations involving the parallel variable you
pass; send and get operations are described in Chapter 10.

As an example of the first situation, consider this function:

float:shapeA f (float:ShapeA x)
{
everywhere .
return (8. / x);

}

What happens if we pass in a parallel variable with an inactive element?
Figure 31 gives an example.

where (p1 I= 1.0) | [] active
= £(pl); —
p2 (p1) inactive
shape ShapeA
0 1 2 3 4 5 n

p2 94.0/7'//2.0 1.0 1.0| 1.0 «s. .5

Figure 31. Passing by value when the function contains an everywhere statement.

The copy made of p1 contains an undefined value, rather than 1.0, in the inactive
position; therefore, the value in [1]p2 is also undefined. Note that you wouldn’t
want to divide by an undefined value.

To avoid this situation, define the function so that it passes by reference rather
than by value.
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8.3.1

8.3.2

Using Shapes with Functions

Passing a Shape as an Argument

C* functions accept shapes as arguments. The function below takes a shape as
an argument and allocates a local variable of that shape.

int number_of_active positions (shape x)
{
with (x) {
int:x local = 1;
return (+= local);

}
The shape that you pass need not be the current shape.

If the function also returns a parallel variable that is of the shape specified in the
parameter list, its shape must be declared after the parameter list, to avoid a for-
ward reference. For example:

float raise(shape employees, float:employees salary) :employees

{
return (1.1 * salary);

}

This format is not especially useful in this case, since employees must be the
current shape. The format becomes more useful when you pass more than one
shape, and data is passing between the shapes. For information on communicat-
ing between shapes, see the discussion of parallel left indexing in Chapter 10 and
the discussion of general communication in Chapter 14.

Returning a Shape

C* functions can also return a shape. For example:

shape choose_shape (shape ShapeA, shape ShapeB, int n)
{ .
if (n)
return ShapeA;
" else
return ShapeB;
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This function returns ShapeA or ShapeB, depending on the value of n.

A function that returns a shape can be used as a shape-valued expression — that
is, you can nse it in place of a shape name. For example:

with (choose_shape (shapel, shape2, s1))
/* .. %/

See Section 9.7, however, for limitations on the use of a ﬁmcﬁon as a shape-
valued expression when you are declaring a parallel variable.

When You Don’t Know What the Shape Will Be

Some functions you write may be general enough that they can accept a parallel
variable of any shape as an argument. For example, the print_sum function
used as an example in Section 8.1 could work with any parallel variable. To al-
low this, C* introduces two new “predeclared” shape names: current and
void. A predeclared shape name is provided as part of the language; you do not
declare it in your program.

The current Predeclared Shape Name

The predeclared shape name current always equates to the current shape; cur -
rent is a new keyword that C* adds to Standard C. You can use current to
declare a parallel variable as follows:

int:current variableil;

If employees is the current shape when this statement is executed, variablel
is of shape employees; if image is the current shape, variablez1 is of shape
image.

NOTE: Since current is dynamic, you cannot use it with a parallel variable of
static storage duration.

Thus, we can generalize print_sum as follows to let it take any parallel int of
whatever shape is current when the function is called:

vold print_sum(int:current x)

{
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printf (*The sum is %d.\n”, +=x);
}

In fact, this version of the function is more efficient than the version that speci-
fies a particular shape name in the parameter list. If the function specifies a shape
name, the compiler has to first make sure that the shape is current, and that the
parallel variable is of the current shape. If the function uses current, the com-
piler has to make sure only that the parallel variable is in fact of the current
shape. :

The void Predeclared Shape Name

C* extends the use of the Standard C keyword void. In addition to the standard
use, it can be used as the shape modifier for a scalar-to-paralle]l pointer; it speci-
fies a shape without indicating what the shape’s name is. C* does no type
checking of a void shape.

Use void instead of a shape name in a function’s parameter list to specify that
any shape is acceptable as an argument to the function. If you are specifying a
paralle] variable that can be of any shape, a type specifier (for example, int,
float) is still required. Since you cannot pass a parallel variable that is not of
the current shape, void must be the shape modifier of a scalar-to-parallel
pointer. For example, this function sums the values of the active elements of a
parallel int of any shape:

int sum(int:void *x)
{
with (shapeof (*x))
return (+= *x);

}

You can also use void outside a parameter list to declare a scalar pointer to a
paralle] variable. For example:

int:void *ptr;

This declares ptr to be a pointer to a parallel int of an undetermined shape. The
shape is determined by the parallel variable whose address is ultimately assigned
to the pointer. For example, if ptx points to p1:

ptr = &pl;
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then ptz is a pointer to an int of shape shapeof (p1) . But note that a parallel

~ variable of another shape could subsequently be assigned to ptr, and the C*
compiler would not complain; ptr would then simply point to the new parallel
variable.

Using shapeof with the void Shape

While convenient, using the void shape slows down a program if run-time
safety is enabled. It is therefore preferable to use void only for the first parame-
ter of a function. For subsequent parameters of the same shape, use the shapeof
intrinsic function; shapeo£ provides more information to the compiler, thereby
allowing the compiler to generate better code. Also use shapeof in the control-
ling expression of the with statement to choose the current shape.

For example:

int sum of_ two _vars(int:void *x, int:shapeof (*x) *y)
{
with (shapeof (*x))
return (+= (*x + *y));

}
For parameters declared locally within the function, use current:

float average(int:void *x)

{
with (shapeof (*x)) {
int:current y = 1;
return (+=*x / +=y);
}
}

Using void when Returning a Pointer

Consider this function, which is passed a shape and returns a pointer to a parallel
variable of that shape:

int *f (shape Shaped) :Shapea /* This is wrong */
{

/* ... %/
}
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The shape of the return value must come after the parameter list, to avoid a for-
ward reference. However, C* doesn’t allow this alternative syntax for a function
returning a pointer. The problem is the same as that discussed in Section 7.3.1;
the compiler interprets the return value incorrectly as “a parallel pointer of shape
ShapeaA to a scalar int,” and parallel-to-scalar pointers do not exist in C*.

Use void instead of the shape name for the return value in this situation. For
example:

~int:void *f(shape Shapea)
{

/* ... %/
1

Note that this causes an unavoidable loss of some type-checking, since the com-
piler cannot check for the correct use of the shape of the variable pointed to.

Overloading Functions

It may be convenient for you to have more than one version of a function with
the same name — for example, one version for scalar data and another for paral-
lel data. This is known as overloading. C* allows overloading of functions,
provided that the functions differ in the type of at least one of their arguments
or in the total number of arguments. For example, these versions of function £
can be overloaded:

void f(int x);
void f(int x, int y);
void f(int:current x);

Use the overload statement to specify the names of the functions to be over-
loaded. For example, this statement specifies that there may be more than one
version of the incxrement function:

overload increment;

Put the overload statement at the beginning of the file that contains the declara-
tions of the functions. The statement must appear before the declaration of the
second version of the function, and it must appear in the same relative order with
respect to the function declarations in all compilation units. Thus, if it appears
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first in one compilation unit, it must appear first in all compilation units. If you
use a header file for your function declarations, this happens by default.

i you have different versions of more than one function, separate the function
names by commas in the overload statement. For example:

overload increment, average;

NOTE: The CM-200 and CM-5 implementations of C* restrict the shape of paral-
lel formal parameters you can specify in declaring overloaded functions. Only
current and void can be used in overloaded function declarations.

i
¥

May 1993
Copyright © 19901993 Thinking Machines Corporation







=
.

Chapter 9

More on Shapes
and Parallel Variables

Chapter 3 introduced C* shapes and parallel variables. This chapter discusses
more aspects of these important topics. Specifically:

= Partially specifying a shape; see Section 9.1.
%3 ) = (Creating copies of shapes; see Section 9.2.
u ® Dynamically allocating and deallocating a shape; see Sections 9.3 and 9.4.

= Using the C* library function palloc to explicitly allocate storage for a
parallel variable; see Section 9.5.

= (Casting to a shape, and casting to or from a parallel data type; see Sec-
tion 9.6.

9.1 Partially Specifying a Shape

It is possible to declare a shape without fully specifying its rank and dimensions.
You might do this, for example, if the number of positions in the shape is to be
determined from user input. For example,

shape ShapeA;

declares a shape Shapea but does not specify its rank or dimensions. Such a
shape is fully unspecified.

%; i ) shape []ShapeB;
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specifies that ShapeB has a rank of 1, but does not specify the number of posi-
tions. Such a shape is partially specified.

You must fully specify a shape before using it (for example, before allocating
parallel variables of that shape). Sections 9.2 and 9.3 describe ways of fully spec-

ifying a partially specified or fully unspecified shape.

The rankof intrinsic function returns 0 for a fully unspecified shape. For a par-
tially specified shape, it returns the rank. For example, given these shapes:

shape s, []1[lt, [8092]u;

These statements are true:
rankof (s) == 0;
rankof (t) == 2;
rankof (u) == 1;

This information can be used if you don’t know whether or not a shape is fully
specified — for example, in a function, where the function can fully specify a
shape only if necessary.

Partially Specifying an Array of Shapes
You can also create an array of shapes that is partially specified. For example,
shape ShapeC[10];

declares that Shapec is an array of 10 shapes, but does not specify the rank or
dimensions of any of them.

shape [] [} ShapeD[10];

declares that ShapeD is an array of 10 shapes, each of rank 2, but does not spec-
ify the number of positions in any of them.

A shape within such an array is specified with a right index in the standard man-
ner. For example,

with (ShapeD[0])

makes the first shape in the array the current shape. Note that the shape must
become fully specified before you can use it in this way.
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You cannot use a parallel variable as an index into an array of shapes.

Arrays and Pointers

The Standard C equivalence of arrays and pointers is maintained in C* with ar-
rays of shapes and pointers to shapes. For example, if we declare a scalar pointer
to Sarray:

shape *ptr;
ptr = Sarray;

then *ptr is equivalent to Sarray[0] and to *Sarray. Similarly,

Sarray [3]
is equivalent to

* (ptr + 3)
and to

* (Sarray + 3)

Limitations
You cannot partially specify the dimensions of a shape. This statement is
incorrect:

shape [] [4]ShapeE; /* This is wrong */

Also, you cannot partially specify the rank of a shape. This statement is incorrect,
if you later want to specify the shape as having a rank of 2:

shape []ShapeF;

A program cannot call the positionsof or dimof intrinsic function if the in-

- formation the function requires has not yet been specified. If it is known when

May 1993

the program is being compiled that an error will result from such a call, the com-
piler reports an error. Otherwise, a run-time error is reported.

. A shape must be fully specified before you can declare a parallel variable to be

of that shape. You generally receive a compiler error if you try to declare a paral-
lel variable to be of a shape that is not fully specified. A couple of exceptions:
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= If the parallel variable is declared as an automatic in a nested scope. For
example:

shape ShapeA;

main()
{

int:Shapea pi;
}

In this case, the compiler assumes that Shapea is fully specified else-
where in the program. If it is not, a run-time error may be generated.

= If the shape has a storage class of extexrn. For example:

extern shape ShapeB;
int:ShapeB p2;

In this case, the compiler assumes that ShapeB is fully specified in some
other compilation unit, and a run-time error may be generated if it is not.

The next section describes how to, in effect, create copies of shapes. The section
after that describes how to fully specify a partially specified or fully unspecified
shape using the C* intrinsic function allocate_shape.

Creating Copies of Shapes

One way to fully specify a shape is by using the assignment operator to copy a
fully specified shape to a partially specified one. For example:

shape ShapeA;
shape [256] [256] ShapeB;
ShapeA = ShapeB;

In this case, both Shapea and ShapeB refer to the same shape. You can use
either one in a with statement to make this shape the current shape. This is dif-
ferent from what would happen if both were declared separately, but with the
same dimensions. For example:

shape [256] [256]Shape’;
shape ([256] [256] ShapeB;
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In this case, ShapeA and ShapeB refer to two separate physical shapes that hap-
pen to have the same rank and dimensions.

You can also fully specify a shape by using a shape-valued expression as the RHS
of the assignment. For example:

ShapeA = shapeof (pl): /* pl is a parallel variable of
some other shape */

ShapeB = (new_shape()); /* new_shape returns a shape */

ShapeC = *ptr; /* ptr is a pointer to a shape */

Assigning a Local Shape to a Global Shape

Be careful when assigning a fully specified shape in local scope to a partially
specified shape in file scope. This code illustrates the problem:

shape ShapeA; /* Unspecified shape ShapeA */
void f{void)
{
shape [1024] [512])ShapeB; /* Fully specified shape ShapeB
in local scope */
ShapeA = ShapeB; /* ShapeB assigned to ShapeA */
}

main ()
{
£0:
{
int:ShapeA pl; /* This allocation fails because
ShapeA’s shape was deallocated
when function f exited. */

}

In this case, the actual physical shape that Shapea refers to is allocated in local
scope. When function £ exits in the sample code, this shape is deallocated. When
the code subsequently tries to declare a parallel variable of shape Shapea, it gets
an error, because the shape no longer exists.

The situation is analogous to what happens when a local pointer is assigned to
a global pointer in Standard C.
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9.3 Dynamically Allocating a Shape

Another way to fully specify a partially specified or fully unspecified shape is
to use the C* intrinsic function allocate_shape. allocate_shape’s first ar-
gument is a pointer to a shape; its second argument is the rank of this shape;
subsequent arguments are the number of positions in each rank. The function
returns the shape it points to. For example,

shape []ShapeB;
ShapeB = allocate_ shape (&ShapeB, 1, 65536);

completes the specification of the partially specified 1-dimensional shape
ShapeB.

You needn’t partially specify a shape before calling allocate_shape. For
example,

allocate_shape (&new_shape, 3, 2, 2, 4096);
returns a 3-dimensional shape called new_shape.

allocate_shape can also fully specify elements of an array of shapes. For
example:

ShapeD[0] = allocate_shape (&ShapeD[0], 2, 4, 16384);

Alternatively, you can use an array to specify the number of positions in each
rank. This format is useful if the program will not know the rank until run time,
and therefore can’t use the variable number of arguments required by the previ-
ous syntax. The example below reads the rank and dimensions in from a file
named shape_info and uses these values as arguments to allocate_shape.

#define MAX AXES 31
#include <stdio.h>

main()

{
FILE *f;
int axes[MAX AXES], i, rank;
shape ShapeA;

f = fopen(”shape_info”, "r”);
fscanf (£, 7%d”, &rank):

if (rank > MAX AXES) {
fprintf (stderr, ”“Rank bigger than maximum
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allowed.\n”);
exit(1);
}
for (i = 0; i < rank; i++)
fscanf (£, "%d”, &axes[i]);

ShapeA = allocate_shape (&ShapeA, rank, axes);
}

Note that axes is initialized as an array of 31 elements, since the CM restricts
shapes to a maximum of 31 dimensions. Of course, the file shape_info could
contain fewer than the maximum number of dimensions.

NOTE: For certain programs you may be able to improve performance by using
the intrinsic function allocate_detailed_shape instead of allo-
cate_shape. Appendix A discusses this function for CM-200 C*; Appendix B
discusses it for CM-5 C*. '

EEEE

9.4 Deallocating a Shape

Use the C* library function deallocate_gshape to deallocate a shape that was
allocated using the allocate_shape function. Its argument is a pointer to a
shape. Include the header file <stdlib.h> if you call deallocate_shape.
Note that this is not required for allocate_shape, which is an intrinsic
function.

‘ There are two reasons to deallocate a shape:

‘ = If you have reached the limit on the number of shapes imposed by your
CM system. To avoid this, in general you should deallocate a shape when
you leave the scope in which the shape is defined.

= If you want to reuse a partially specified shape.
As an example of the latter, consider this code:
i #include <stdlib.h>

shape [18S;
int positions = 4096;

) main()
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while (positions<=65536) {
S = allocate_shape(&S, 1, positions);
{ .
int:s pl, p2, p3;
/* Parallel code omitted ... */

}
deallocate_shape (&S) ;
positions *= 2;

}

In this code, shape 8 is allocated every time it goes through the while loop, and
deallocated at the end of the loop. This lets it have a different number of positions
each time through the loop.

The results of deallocating a shape that was fully specified at compile time are
undefined.

You should not deallocate a shape when there are parallel variables of that shape
still allocated; if you do, the behavior of these parallel variables is undefined.
Note that in the code fragment above, the parallel variables declared to be of
shape 8 go away when you leave the block.

As discussed in Section 9.2, you can create copies of shapes by assigning one
shape to another. If you have created copies of shapes in this way and you deallo-
cate one, the effect on the others is undefined.

Dynamically Allocating a Parallel Variable

The C* library routine palloc is the parallel equivalent of C library routines like
malloc and calloc. Use it to explicitly allocate storage for a parallel variable.
It can be called whether or not the parallel variable’s shape is dynamically allo-
cated. Include the file <stdlib.h> if you call palloc or its companion
function pfree.

palloc takes two arguments: a shape, and a size (in bools). It allocates space
of that size and shape, and returns a scalar pointer to the beginning of the allo-
cated space. The shape passed as an argument must be fully specified before
palloc is called.
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* palloc returns 0 if it cannot allocate the memory.

To allocate space for a parallel variable of shape Shapea, for example, you could
do this:

#include <stdlib.h>

shape [16384]Shapea;
int:ShapeA *ptr;

main()
{

ptr = palloc(ShapeA, boolsizeof (int:Shaped));
}

The scalar variable ptx now contains a pointer to an int-sized parallel variable
of shape shapeA. You can reference this paralle] variable by using *ptzx. The
contents of the parallel variable are undefined.

Use pfree to deallocate storage you allocated with palloc. pfree takes as its
argument the pointer returned by palloc. For example, to deallocate the storage
allocated by the call to palloc above, call pfree as follows:

pfree(ptr);

The palloc and pfree calls can also be used with a dynamically allocated
shape, as in this example:

#include_(stdlib.h)

shape S;
double:S *p;

main ()

{
S = allocate_shape (&S, 2, 4, 8192);
p = palloc(S, boolsizeof (double:S));
/* .. %/
pfree(p);
deallocate_shape (&S) ;

}

Note that you are responsible for freeing the storage you allocate before you free
the associated shape.
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Also, note that you can declare a scalar pointer to a parallel variable of a shape
that is not fully specified, even though you cannot declare a parallel variable of
that shape.

Casting with Shapes and Parallel Variables

Use the C* cast operator to cast an expression to a particular shape and type. For
example,

(char:employees)

specifies that the expression following it is to be formed into a char of shape
employees. You must specify a data type as well as a shape in a parallel cast;
there are no defaults.

Scalar-to-Parallel Casts

Using a parallel cast is a quick way to promote a scalar value. The statement
below stores in scalar variable s1 the number of active positions of the current
shape:

sl = +=(int:current)l;

In the statement, 1 is cast to a parallel int of the current shape. The += reductioh
operator sums the resulting parallel variable for all active positions, and the result
is assigned to the scalar variable s1.

Parallel-to-Parallel Casts

Parallel-to-parallel casts are also permitted.

Casts to a Different Type
You can cast a parallel variable so that it has a different type. For example:
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int:ShapeA pil;
sqgrt{ (double:ShapeA)pl) ;

The parallel version of sqrt requires a £1oat or a double; therefore, we must
cast the parallel int p1 before we can pass it to this function.

Casts to a Different Shape

Casting of a parallel variable to a different shape is limited to the situation in
which the same shape can be referenced by more than one name. In this case, a
cast may sometimes be necessary to ensure that the compiler recognizes that two
parallel variables are supposed to be of the same shape. For example:

shape [256] [256] ShapeB, Shapea;

main ()
{
ShapeA = ShapeB;
{
int a:ShapeA, b:ShapeB;
with(ShapeB) {
b = a; /* This gets a compile-time error */
b = (int:ShapeB)a; /* This works */
}

}

The cast is required so that the compiler is made aware that Shapea and ShapeB
refer to the same shape.

No movement of data is implied in a parallel-to-parallel cast.

The effects of casting an expression between two shapes that are different (for
example, with a different rank or number of positions) are undefined.

With a Shape-Valued Expression

You can use a shape-valued expression with a scalar-to-parallel or parallel-to-
parallel cast. The expression must be enclosed in parentheses unless it is an
intrinsic function. For example,

sl = +=(int: (shape_array(3]))1;
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casts 1 to be an int of the fourth shape in the array shape_array.

Parallel-to-Scalar Casts

You can cast a paralle] variable to a scalar type. The result is similar to a demo-
tion of a parallel variable when assigning it to a scalar (see Chapter 5); the
operation picks one of the active values of the parallel variable and returns that
as the result. If no positions are active, the result of the cast is undefined.

Declaring a Parallel Variable with a
Shape-Valued Expression

A shape-valued expression, as we have described earlier, is an expression that
can be used in place of a shape name. You can therefore use a shape-valued ex-
pression in declaring a parallel variable. The expression must be enclosed in
parentheses unless it is the shapeof intrinsic function. For example:

shape [256] [256]matrix;

int:matrix pi;

int:shapeof (p1) p2; /* p2 is of shape matrix */
int: (get_shape()) p3: /* get_shape returns a shape */

However, if the declaration appears at file scope, or is static or extern, the
shape-valued expression must be a constant. This means that the expression must
be one of the following:

= A simple shape that is fully specified at compile time, or that has a storage
class of extern. For example, shapeof in the example above refers to
a fully specified shape.

® An array of shapes that is fully specified at compile time and whose right
index is a constant expression. For example:

shape [256] [512]Sarray[40];
int: (Sarray[17]) pi1;
int: (Sarray[4-3]) p2;

®  Anindirection of an array of shapes that is fully specified at compile time,
with a constant expression added to it. For example:
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shape [512] [256]Sarray[40];
int: (* (Sarray + 17)) pi;
int: (*(Sarray + 4 - 3)) p2;

These are illegal:

shape Sarrayi1([40];
int: (Sarray1[17]) pi; /* This is wrong */

Sarray1 is not fully specified; therefore, you can’t declare p1 to be a parallel
variable of any of the elements of it.

shape [512] [256]Sarray[40];
int: (Sarray([f£(x)]) pil; /* This is wrong */

In this case, Sarray is fully specified, but £ (x) is not a constant expression,
since it invokes a function whose result is not known until run time.

shape *ptr;
int: (*ptr) pil; /* This is wrong */

In this case, ptr does not point to a fully specified shape.

9.8 The physical Shape

C* contains the predeclared shape name physical; physical is a new key-
word that C* adds to Standard C. The shape physical is always of rank 1, its
number of positions is the number of physical processors on which your program
is running. (In the CM-5 implementation, it is either the number of nodes or the
number of vector units, depending on how you compiled the program. See the
CM-5 C* User s Guide for more information.) Note, therefore, that the number
of positions in the shape is not known until run time.

You can use physical as you would any other shape. For example,
positicnsof (physical) ;

returns the number of positions in shape physical, which is equal to the num-
ber of physical processors on which the program is running.

(int:physical)pl

casts p1 to be an int of shape physical.
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Communication

This chapter describes methods you can use to perform communication among
parallel data. For example:

= Sending values of parallel variable elements to other elements of the same
or a different shape. .

= Getting values of parallel variable elements that are of the same or a differ-
ent shape.

C* provides two methods of communication: |

® General communication, in which the value of any element of a parallel
variable can be sent to any other element, whether or not the parallel vari-
ables are of the same shape. You can use parallel left indexing to perform
general communication. Paralle] left indexing is described in Section 10.1.

®  Grid communication, in which parallel variables of the same shape can
communicate in regular patterns by using their coordinates. We use the
term “grid communication” since the coordinates can be thought of as lo-
cating positions on an n-dimensional grid. Grid communication is faster
than general communication. You can use the pcoord function, combined
with paralle] left indexing, to perform grid communication. The pcoord
function is described in Sections 10.2 and 10.3.

In addition to the methods described in this chapter, C* includes a library of
functions that provide an alternative way of performing grid and general commu-
nication; these functions are discussed in Part III of this manual. There are some
differences in what you can accomplish using the different methods, but for most
purposes the choice between the methods depends on individual preference.
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10.1 Using a Parallel Left Index for a Parallel Variable

By now you should be familiar with the left indexing of a parallel variable to
specify an individual element. For example, [0]p1 specifies the first element of
the 1-dimensional parallel variable p1. Similarly, if s1 and s2 are scalar vari-
ables, their values determine which element is specified by the 2-dimensional
paralle] variable [s1] [s2]d1. But we have not yet covered the case in which
a parallel variable is used as a left index for another parallel variable. If po and
p1 are both 1-dimensional parallel variables, what does [p0l1p1 mean? If do,
d1, and 42 are all 2-dimensional parallel variables, what does [d0] [d1]d2
mean?

Basically, a paralle] left index rearranges the elements of the parallel variable,
based on the values stored in the elements of the index; the index must be of the
current shape. The example discussed below will help show how this works.

Note to users of CM-200 C*: This and other examples in this chapter do not
represent valid shapes in the CM-200 implementation, because there are too few
positions; we use these small shapes to make it easier to visualize what happens
when you use a parallel] left index.

source 0 10| 20 | 30 40

index 1 3 0 4 2

dest

Figure 32. Three parallel variables.
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A Get Operation

Given the situation shown in Figure 32, what is the result of the statement below?
dest = [index]source;

Let’s look first at what goes into element O of dest. The value in element [0] of
index is 1. This value is used as an index into the elements of source. The
value in element 1 of source is 10. Therefore, element 0 of dest gets assigned
the value 10. The way to think of this is that the LHS variable gets a value of the
RHS variable, based on the value of the corresponding element of the index vari-
able; we refer to this as a get operation. In C* code, what happens is this:

[0ldest = [1]source;

For element 1 of dest, the value of the index variable is 3. Therefore, element
1 of dest gets the value of element 3 of source, which is 30. In C* code:

[1] des_t = [3]souzce;
And for the remaining elements:

[2]dest = [0]source;
[3]1dest [4] source;
[4]dest [2] source;

It’s important to note the difference between parallel left indexing and these se-
rial statements. Parallel left indexing causes these assignments to occur at the
same time, in parallel. In the serial statements, the result of an earlier statement
could affect the result of a later one; this does not happen when all the statements

. are executed at the same time.

May 1993

Figure 33 shows the results of the assignment statement for all elements of dest;
the arrows show the process by which a value is assigned to [0] dest. The value
of [0]index is 1, which causes [0]dest to get the value in [1] source.
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dest = [index]source;

source 0 10 20 30 40

Vi

index 1 3 0 4 2

dest 10 | 30 0 40 | 20

!
Figure 33. Parallel left indexing of a parallel variable — a get operation. |
|

10.1.2 A Send Operation

Here is another assignment statement that uses the data in Figure 32: tl
[index]dest = souzce; |

In this case, index is being used as an index for dest. In statements of this form, ;
the RHS variable sends a value to the LHS variable, based on the value of the ;
corresponding element of the index variable; we refer to this as a send operation. )

Let’s look at element 0 of source. The value in element 0 of the index variable
index is 1; this value is used as an index into dest. The value in element 0 of
source, 0, is sent to element 1 of dest. In C* code:

[1]dest = [0]source;

For element 1 of source,- in the corresponding element, the value of index is i
3; therefore, the value in element 1 of source, 10, is sent to element 3 of dest.
In C* code: -'

[3]1dest = [1]source;
The serial C* statements for the rest of the elements are:

[0ldest = [2]source;
[4]1dest = [3]source;
[2]dest = [4]source; Q;

May 1993 i
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Note once again, however, that parallel left indexing causes all these statements
to be executed at the same time. The results are shown in Figure 34; the arrows
show the process by which the value in [0] source is assigned to an element
of dest. The value in [0] index is 1; therefore, [0] souxrce sends its value to
[1]1dest.

[index] dest = source;

source 0 10 20 30 40

index 1 \3 0 4 2

dest 20 0 40 | 10 | 30

Figure 34. Parallel left indexing of a parallel variable — a send operation.

10.1.3 Use of the Index Variable

The index variable would typically contain values that cause a meaningful rear-
rangement of the parallel variable it indexes. For example, if we use the values
shown in Figure 35,

dest = [index]source;

causes dest to contain the source values in reverse order; the arrows show the
process by which [0]dest gets its value, based on the index in index.

The index variable cannot reference nonexistent elements of a parallel variable.
For example, an index value of 5 in Figure 35 creates unpredictable results.
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[index] dest - source;

source 0\ 10 | 20 | 30 40

index 4~

dest | 40 | 30 | 20 | 10 ™0

Figure 35, An index that reverses the order of a parallel variable.

10.1.4 If the Shape Has More Than One Dimension

Parallel left indexing can be used if the parallel variable is of a shape with more
than one dimension. In this case, however, you need to specify a left index for
each axis of the shape. For example:

shape [128] [512]ShapeA;
int:ShapeA dest, index0, indexl, source;

main ()
{
with (Shapea)
dest = [index0] [index1] source;

}

In this case, source is of the 2-dimensional shape Shapea. Therefore, it re-
quires two left indexes to specify the values to be assigned to dest. indexo0 is
used as the index for axis 0 of source, and index1 is used as the index for axis
1 of source.

If one of the indexes is parallel and one or more are scalar, the scalar indexes are
promoted to parallel in the current shape.
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10.1.5 When There Are Potential Collisions

In the examples of parallel left indexing shown so far, the index variable, index,
has had different variables in each element. Let’s consider a situation, shown in
Figure 36, where this is not true.

source 0 10 20 30 40
index 1 1 1 1 1
dest

Figure 36. An index with the same value in each element.

For a Get Operation
Using the data in Figure 36, the result of this get operation is straightforward:
dest = [index]source;

For each element of dest, the index index into source is 1. This means that
the value in element 1 of sourxce, 10, is assigned to each element of dest, as
shown in Figure 37.

May 1993 ,
Copyright © 1990-1993 Thinking Machines Corporation



C* Programming Guide

dest = [index]source;

0 1 2 3 4

source 0 10 20 30 40

index 1 1 1 1 1

dest 10} 10| 10| 10 | 10

Figure 37. A get operation where the index has the same value in each element.

It is equivalent to this C* code:

[0ldest = [1]souzce;
[1]dest [1] source;
[2]dest [1] source; /* ... and so on */

except that all operations are carried out at the same time, in parallel.

For a Send Operation
If we try this, however:
[index] dest = source;

we have a problem. For each element of source, the index into dest is 1. This
means that all the values of all the elements of source attempt to write into ele-
ment 1 of dest. In serial C* code:

[1]1dest = [0]source;
[1]1dest = [1]source;
[1]dest = [2]source; /* ... and so on */

This is an example of potential collisions, which could occur when more than
one element tries to write into the same element at the same time. To avoid the
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collisions, C* chooses one of the source elements to assign to [1] dest. How
it chooses the element is defined by the implementation.

You can use any C* reduction assignment operator in this situation. For example,
we could specify this:

‘[index]dest += source;

This statement says: If there is going to be a collision of source values assigned
to any of the elements of dest, add the values of the source elements that would
otherwise collide, then add this result to the value of the dest element.

In cases where there are no collisions, the value of the source element is simply
added to the value of the dest element. In the example, all the values of source
are summed, and the result is assigned to element 1 of dest, as shown in
Figure 38. (Note that if you knew that all the index values were the same, it
would be more efficient to use a simple unary reduction operator instead of doing
parallel left indexing.) :

[index] dest += source;

0 1 2 3 4

source 0 10 20 | 30 | 40
index 1 1 1 1 1
dest 100

Figure 38. A reduction assignment when the parallel left index is on the LHS.
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The kind of reduction assignment operator you use specifies the way the collid-
ing elements are combined. For example, the > ?= operator selects the maximum
value of the elements.

Note that the reduction occurs only for elements that would otherwise collide.
Given the examples shown in the previous section, for example, the type of re-
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duction assignment you use would not matter, because there are no possible
collisions. This is consistent with the way parallel-to-scalar reduction operators
work, because all values of the parallel variable will collide when they are as-
signed to a scalar variable; therefore, all must be included in the specified
reduction operation.

To sum up:

* In a get operation, you don’t have to consider using a reduction assign-
ment operator, because there are no potential collisions. .

® In a send operation, there may be potential collisions. If you simply use
= instead of a reduction assignment operator, and there is a potential colli-
sion, C* picks one of the colliding values and assigns it to the element.

When There Are Inactive Positions

The examples of parallel left indexing shown so far have assumed that all posi-
tions are active. What happens when a where statement makes some positions
inactive?

For a Get Operation
Consider this get operation:

where (source < 30)
dest = [index]source;

In this situation, the where statement deselects positions [3] and [4], using the
data shown in Figure 39, but it deselects them only for getting purposes. Parallel
variable elements in these positions cannot get values; however, elements in ac-
tive positions can get values from them. The serial C* code would therefore be:

[0]dest = [1]source;
[lldest = [3]source;
[2]dest = [0]source;

except that all operations occur at the same time. Figure 39 shows the results; the
arrows show how [1]dest gets its value.
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where (source < 30) D active
dest=[index] source; e

source 0 10 | 20

7
index 1 3 -] / y/ /;ff;

dest 10 | 30 0 LAy

Figure 39. A get operation with inactive positions.

Note these results:

® [1]dest gets a value from [3] source, even though position [3] is inac-
tive.

® [4]dest does not get a value from [2] source, because position [4] is
inactive.

For a Send Operation
Send operations work similarly:

where (source < 30)
[index]dest = source;

The where statement “turns off” positions 3 and 4, as shown in Figure 40. But
it turns them off only for sending purposes. Elements in inactive positions cannot
send values, but elements in active positions can send to them. Thus, the serial
C* version of this statement would be:

[1l1dest = [0]souzrce;
[3]dest = [1]source;
[0ldest = [2]source;
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The results are shown in Figure 40; the arrows show how the value in
[1] source is sent to [3] dest.

where (source < 30) D active
[index] dest=source; :

source 0 1 O\

index 1 3.

dest 20 0

Figure 40. A send operation with inactive positions.

Note these results:

® [1]source sends its value to [3] dest, even though position [3] is inac-
tive, because position [1] is still active.

® [4]source does not send its value to [2] dest because position [4] is
inactive.

One way to look at the concept of inactive positions in these situations is that the
parallel variable without the parallel left index is the one doing the work (sending
or getting). When a position is made inactive, it can’t do work, but it can have
work done to it. Thus:

* In a send operation, the inactive position can’t send, but other positions
can send to it.

= In a get operation, the inactive position can’t get, but other positions can
get from it.
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Send and Get Operations in Function Calls

As we mentioned in Section 8.2, you should be careful about passing a parallel
variable by value to a function that involves the parallel variable in a send or get
operation. If there are inactive positions when the function is called, the results
may not be what you expected.

For example, suppose we define this function:

int:current get_op(int:current source, int:current index)
{
return ([index]source) ;

}

If we use the data and the context from Figure 39, we get the results shown in

Figure 41.

where (source < 30) [___] active
dest = get_op(source, index); ﬁ inactive

0 1 2

source 0 10 20

index 1 3 0

RS S
dest 10 0 //e{f)?fﬁf’y

Figure 41. A function that includes a get operation.

Note the difference in results between Figure 39 and Figure 41: In Figure 39,
[1] dest got its value from [3] source, even though position [3] was inactive.
In Figure 41, [1] dest receives an undefined value. This happens because the
compiler makes a copy of a parallel variable when it is passed by value, and ele-
ments at inactive positions receive undefined values.
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The solution is to pass source by reference. In that case, the compiler does not
make a copy of the parallel variable, and the function can gain access to values
at inactive positions.

Note that in send operations it is the dest parallel variable that should be passed
by reference, since positions can send to an inactive destination.

10.1.7 Mapping a Parallel Variable to Another Shape
One use of the parallel left index is to map a parallel variable into another shape.
Consider the situation shown in Figure 42.
shape ShapeD
0 1 2
0| 0 1 2
index shape ShapeP
13 4 > 0 1 2 3 4 5
source | 10 | 11 | 12 | 13 | 14 | 15
dest

Figure 42. Two shapes.

The statement:
dest = [index]source;

has the same interpretation as before: Elements of dest get values of source,
based on the value in the corresponding element of index. But in this situation,
we are essentially mapping source into shape ShapeD, based on index.
ShapeD must be the current shape. Since the values in index are the same as
the coordinates for Shapep, the assignment is straightforward: the value of
index for position [0][0] is O; this value is used as an index into the elements
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of source. The value of element [0] of source is 10; therefore, 10 is assigned
to element [0][0] of dest.

The mapping occurs only for the specified operation; it does not permanently
affect the parallel variable being mapped. For example, source remains of
shape ShapeP after the operation above.

shape ShapeD
""'ﬁ\\\
-
0.-"1 2 N
7 AN
of o 1 2 \\ shape ShapeP
index \
1} 3 4 5 0 1 2 3 4 5
source | 10 11 12 13 14 15
-«
10 11 12
dest
13 14 15

May 1993

Figure 43. Mapping a parallel variable to another shape.

If a parallel variable is not of the current shape, you can use a parallel left index
to map it to the current shape and then operate on it. For example:

shape [64] [64]ShapeD;
int:ShapeD index, dest;
shape [16384]ShapeP;
int:ShapeP source;

/* Code to initialize variables omitted. */

main ()
{
with (ShapeD) {
dest = source; /* This doesn’t work—-source
is the wrong shape. */
dest = [index]source; /* This does work. */
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10.1.8

10.1.9

Only active elements of a parallel left index participate in the indexing. If we add
a where statement to the code example above and assume the data shown in
Figure 42:

/* ... */
with (ShapeD) {
where (index != 0)

[0] [0]ldest += [index]source;

}

the value of element [0] of source is not included in the summation.

Limitation of Using Parallel Variables with a
Parallel Left Index

A paralle] variable with a parallel left index is a modifiable lvalue; therefore, it
can appear as the left operand of assignment operators, as the operand of prefix
or postfix ++ or —-, and in all cases where an rvalue is needed. You cannot, how-
ever, take the address of it using the & operator. (In general, this would require
a parallel pointer handle, which isn’t supported in C*.)

What Can Be Left-Indexed

Parallel left indexing follows the general rules about performing parallel opera-
tions within the current shape; see Section 4.4. Specifically:

= If an expression is of the current shape, you can always left-index it.

= If an expression is not of the current shape, you can left-index it when it
is any of these:

« A simple identifier.

= A per-processor array that is not of the current shape, if it is right-
indexed by a scalar value. (You cannot left-index an array that is not
of the current shape if it has a parallel right index, because that
would require a paralle]l operation on a variable not of the current
shape.)

= A parallel variable with the & operator applied to it to take its
address.
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= A member of a parallel structure or union that is not of the current
shape (so long as the member is not an aggregate type, such as
another structure or union).

10.1.10 An Example: Adding Diagonals in a Matrix

The example in this section uses a parallel left index and the += reduction assign-
ment operator to add diagonals in a matrix. It uses the data shown in Figure 44.

source
; 2| 8| 91011
, ) 3| 12| 13 1415
34| 5]s
i

( 23| a]s
i index

Figure 44. Two 4-by-4 parallel variables.

The task is to add the values of source in the diagonals of the matrix. The code
below accomplishes this.

shape [4] [4]ShapeA;
shape [7]ShapeB;

int:ShapeA source, index;
int:ShapeB dest = 0;

_—
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/* Code to initialize the parallel variables omitted */

main ()

{
with (Shapea)
[index]dest += source;

}

As you can see, the actual computation is quite simple, once the data has been
set up properly. Let’s look in detail at the statement:

[index]dest += source;

First, note that the statement is legal, even though dest is not of shape shapea,
since dest is left-indexed by a parallel variable that is of that shape. The state-
ment says: Use index as an index into dest for sending values of source; if
there are potential collisions, add the values of source. So, for example, ele-
ment [0][0] of parallel variable source is assigned to element [3] of dest,
because the value of the corresponding element of index is 3. Element [1][1],
element [2][2], and element [3][3] are also assigned to element [3] of dest. They
are all added, thus avoiding collisions.

The other elements of source are also assigned to dest, based on the value of
the corresponding elements of index. The result is the addition of the diagonals.
Figure 45 shows the results, highlighting the values that go into [3] dest.
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with (ShapeA)
[index] dest +=8ource;

shape ShapeA

o 1 2 3

source
shape ShapeP
0 1 5 6
dest | 12 | 21 9 3
3 41 516
2 31415
index
1 21314
0 11273

Figure 45. Using parallel left indexing to add the diagonals of a matrix,

10.2 Using the pcoord Function

C* includes a new library function called pcoord, which is especially useful
when combined with parallel left indexing. Use pcooxd to create a parallel vari-
~ able in the current shape; each element in this variable is initialized to its
coordinate along the axis you specify as the argument to pcoord. For example,

shape [65536]ShapeA;
int:Shapea pl;

main{)
{
with (Shapea)
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pl = pcoord(0);
}

initializes p1 as shown in Figure 46.

pl = pcoord(0):;

shape ShapeA

Pl 0 1 2 3 4 5 6 7 8 +es | 65535

Figure 46. The use of pcoord with a 1-dimensional shape.

Likewise, for a 2-dimensional shape,

shape [4] [4096] ShapeB;
int:ShapeB p2;

main ()
{
with (ShapeB)
p2 = pcoord(1l);
}

initializes p2 as shown in Figure 47.

p2 = pcoord(1);

0 1 2 3 - 4095

0f 0 11 2 3 ose 4095

110 1 2 3 ces 4095

p2
2 0 1 2 3 vos 4095

3]0 1 2 3 coe 4095

Figure 47. The use of pcoord with axis 1 of a Z-dimensionai shape,.
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Similarly,

with (ShapeB)
p2 = pcoord(0);

initializes p2 as shown in Figure 48.

p2 = pcoord(0);

0 1 2 3 4095
o 0 0 0 0 LA N J 0
111 1 1 1 . i

p2
2] 2 2 2 2 ces 2
33 3 3 3 ces 3

Figure 48. The use of pcoord with axis 0 of a 2-dimensional shape,

The peooxd function provides a quick way of creating a parallel left index for
mapping a paralle] variable into another shape. For example:

shape [16384]ShapeA, [16384] [4]ShapeB;
int:ShapeA source;

/* Code to initialize source omitted. */

main()
{
with (ShapeB) {
int:ShapeB index, dest;
index = pcoord(0);
dest = [index]source;

}
}
Rather than assign the results of pcoord to a parallel variable, you can simply
use it as the parallel left index itself:

dest = [pcoord(0)]source;

May 1993
Copyright © 1990-1993 Thinking Machines Corporation



138 C* Programming Guide

The index of the specified axis of the current shape is generated by pcooxd. This
index is used as an index for selecting elements of a parallel variable of another
shape. The values of these elements are assigned to elements of a parallel vari-
able of the current shape. '

10.2.1 An Example

“This example uses pcoord to transpose a matrix — in other words, to turn its
rows into columns and its columns into rows. For example, consider the simple
3-by-3 parallel variable called matrix shown on the left in Figure 49. The task
is to turn it into the new matrix shown on the right.

0|l 0|12 0 3 6

matrix 1| 3 |4 | 5 —» new_matrix 14| 7

216 |7 8 2 5 8

Figure 49. Transposing a 3-by-3 matrix.

This can be done by reversing the axes for the parallel variable matrix. For
example,. [0] [1]1matxrix (which contains the value 1) becomes element
[1] [0] of a new parallel variable. To do this for a 256-by-256 matrix, use
pcoord as follows:

Shape [256] [256] Shapea;
int:ShapeA matrix, new_matrix;

main()

{
with (ShapeA)
[pcoord(1)] [pcoord(0) Jnew_matrix = matrix;

The statement
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[pcoord(1)] [pcoord(0) Inew_matrix = matrix;

says: Assign each element of matrix to new_matrix, but reverse the axis num-
bering. Thus, in serial C* code:

[0] [0lmatrix;
[1] [0lmatrix;
[2] [0lmatrix;
[0] [1lmatrix; /* And so on */

[0] [0lnew_matrix
[0] [1]1new_matrix
[0] [2]1new_matrix
[1] [0lnew_matrix

except that all operations take place at the same time. This algorithm can be gen-
eralized for use in a function with any 2-dimensional parallel variable:

void transpose(float:current *matrixp,
float:void *new_matrixp)
{
[pcoord (1) ] [pcoord(0) ] *new matrixp = *matrixp;

}

Note these points about transpose:

» It passes two pointers to paralle] variables. matrixp is a pointer to a par-
allel variable of the current shape; we pass a pointer rather than the parallel
variable itself to avoid having to make a copy of the variable.
new_matrixp is a pointer to a paralle] variable of a new shape; we must
pass a pointer in this case because we will be modifying the vari-
able — therefore, it can’t be passed by value.

® We use a second shape so that the function can work with a matrix that
isn’t square. For example, if the current shape is 256 by 512, make
new_matrixp a pointer to a parallel variable of a shape that is 512 by
256.

= The variable pointed to by matrixp is assigned to the variable pointed to
by new_matrixp, and this variable has its coordinates reversed.

10.3 The pcoord Function and Grid Communication

When used with parallel left indexing, pcoord provides the grid communication
capabilities we discussed at the beginning of this chapter.

Consider this statement, where both dest and souxce are of the current shape:
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dest = [pcoord(0) + 1]source;

This statement says: Each active element of dest is to get the value of source
that is in the position one coordinate higher along axis 0. You can either add a
scalar value to or subtract a scalar value from pcoozrd in the left index. Which
operation you choose determines the direction of the communication; the value
added or subtracted specifies how many positions along the axis the values are
to travel. Note, however, that the values must stay within the border of the grid;
the behavior is undefined if dest tries to get a nonexistent element of source.

You can use pcooxd for a send operation as well as for a get operation; send and
get operations are discussed in Section 10.1. For example:

[pcoord(0) + 1)dest = source;

This statement says: Send the value of the source element to the dest element
that is one position higher along axis 0.

You can use pcoord to specify movement along more than one dimension. For
example:

dest = [pcoord(0) - 2] [pcoord(l) + 1llsource;

Note that specifying the axes in this kind of statement provides redundant infor-
mation. By definition, the first pair of brackets contains the value for axis 0, the
next pair of brackets contains the value for axis 1, and so on. C* therefore lets
you simplify the expression by substituting a period for pcoord(axis-number).
The period is position-dependent. If it is in the first pair of brackets, it means
pcoord (0); if it appears in the second pair of brackets, it means pcoord (1),
and so on. Thus, this statement is equivalent to the statement above:

dest = [. - 2][. + llsource;

Grid Communication without Wrapping

As we noted above, behavior is undefined when elements try to get or send be-
yond the border of the grid. This means that the statements shown so far are not
especially useful, because they do not solve this problem. What happens to the
elements of dest in row 0 when they try to get from [pcoord(0)-1] — that
is, from beyond the border of the grid?

For this kind of statement to work, you must first use a where statement to tarn
off positions that would otherwise get or send beyond the border of the grid. For
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example, if you want elements to get from elements two coordinates lower along
axis O (that is, position 2 gets from position 0, position 3 gets from position 1,
and so on), you must turn off positions 0 and 1, because elements in these posi-
tions would otherwise attempt to get nonexistent values. The code below
accomplishes this:

where (pcoord(0) > 1)
dest = [. - 2]source;

If you want to get from a parallel variable two coordinates higher along axis 0
(position 0 gets from position 2, and so on), you can use the dimof intrinsic
function to determine the number of positions along the axis. For example:

where (pcoord(0) < (dimof (Shapea, 0) - 2))
dest = [. + 2]source;

Note that you must subtract 2 from the result returned by dimo£ to turn off the
correct number of positions. If dimof returns 1024, the positions are numbered
0 through 1023. To turn off positions 1022 and 1023, you must subtract 2 from
1024 and specify that the result of calling pcoord is to be less than this.

Grid Communication with Wrapping

To perform grid communication in which the values “wrap” back to the other
side of the grid, we once again need to use the dimof intrinsic function. Consider
this statement:

dest = [(. + 2) %% dimof (ShapeA, 0)]source;
The expression in brackets does this:
1. It adds 2 to the coordinate index returned by pcoord.

2. For each value returned, it returns the modulus of this number and the
number of positions along the axis.

Step 2 does not affect the results as long as step 1 returns a value that is less than
the number of coordinates along the axis. For example, if (. + 2) is502ina
1024-position axis, the result of (502 %% 1024) is 502. When step 1 returns
a value equal to or greater than the number of coordinates along the axis, step 2
achieves the desired wrapping. For example, element [1022] of dest attempts
to get from clement [1024] of source, which is beyond the border of the grid.
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But (1024 %% 1024) is 0, so instead [1022]dest gets from [0] source.
Thus, the %% operator provides the wrapping back to the low end of the axis.

Similarly,
dest = [(. - 2) %% dimof (ShapeA, 0)]source;

provides wrapping to the high end of the axis. For this statement, let’s look at the
case where [0] dest tries to get a value from the element of source that is two
lower along axis 0. If there are 1024 coordinates along the axis, this produces the
expression (-2 %% 1024) for the left index of source. Following the proce-
dure for %% shown on page 52, we find that the result of this expression is 1022.
This is the element of source from which [0] dest gets its value.

Note that you cannot use the Standard C operator % to perform these operations,
because different implementations of % can give different answers when one or
both of its operands is negative. The %% operator guarantees that the sign of the
answer is the same as the sign of the denominator, which is what is required.
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Chapter 11

Introduction to the
C* Communication Library

Chapters 11-14 of this guide describe a set of C* library functions that provide
different kinds of communication. For example, these functions allow you to:

=  Send values of parallel variable elements to other elements of the same
shape.

® Send values of parallel variable elements of one shape to elements of an-
other shape.

= Perform different kinds of computation on values while sending them to
elements of the same or a different shape.

= Send data from parallel variable elements to a scalar variable, and from a
scalar variable to a parallel variable element.

" Send data from a parallel variable to a scalar array, or from an array to a
paralle] variable.

Of course, you can perform similar kinds of communication using features of C*
itself; see Chapter 10. These library functions supplement, and in many cases
overlap, the communication features contained in the language itself. Several of
them are particularly useful when the rank of a shape is not known until run time;
in that situation, you cannot use left indexing to specify a parallel variable ele-
ment, because you cannot specify values for all the axes when you write the
program. The functions, however, provide a way to manipulate such data.

This chapter introduces the methods of communication available using C* li-
brary functions, and gives an overview of these functions.
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Include the header file <cscomm.h> in programs that call any of the functions
discussed in the next three chapters. The functions are part of the C* run-time
system, and are linked in to your program by default.

Two Kinds of Communication

There are two different kinds of communication in C*: grid and general.

Grid Communication

In grid communication, elements of parallel variables in the same shape commu-
nicate in regular patterns by using their coordinates. In other words, values of all
elements in a parallel variable move the same number of positions in the same
direction — for example, each element sends its value to the element of another
parallel variable that is two coordinates higher along axis 0.

These functions implement grid communication:
" from grid
® from grid dim
® from torus
" from torus_dim
® to_grid
* to_grid dim
® to_torus

" to_torus dim

In addition, the pcoord function, which we discussed in Chapter 10, can be used
in certain kinds of grid communication.

Grid communication is discussed in Chapter 12.
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General Communication

General communication allows any parallel variable element to send its value to
any other element, whether or not they are of the same shape, and whether or not
the pattern of communication is regular. It also allows scalar variables to send
values to or receive values from parallel variables. This kind of communication
uses a position’s send address rather than its coordinates. The send address is a
combination of a position’s shape and coordinates that uniquely identifies the
position among all positions in all shapes. General communication is more versa-
tile than grid communication, but it is also slower. It achieves the same result as
parallel left-indexing a parallel variable; see Chapter 10.
General communication is implemented by these C* functions:

" make_send address

® send

" get

. read_f::oﬁ_position

® read_from pvar

" write_to_position

" write_to_pvar

" make multi_cooxd

These functions are discussed in Chapter 14.

Communication and Computation

Many C* functions perform computations or combining operations on the paral-
lel values they transmit. Most of these functions involve grid communication.
For example, the scan function lets you combine values of specified elements
of a parallel variable along an axis of a shape. You can add these values, for ex-
ample, multiply them, or take the minimum or maximum. These C* library
functions provide communication and computation:

® gcan

= gpread
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" copy_spread

® multispread

" copy_multispread
® enumerate

® rank

® reduce

® copy_reduce

" global
These functions are discussed in Chapter 13.
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As we mentioned in the previous chapter, there are two ways for data to be com-
municated from one position to another within a shape: by using the absolute
address (called the send address) of the position, or by using the position’s coor-
dinates within the shape. Within-shape communication in regular patterns that
uses positions’ coordinates is referred to as grid communication, since the coor-
dinates can be thought of as locating positions on an n-dimensional grid.

This chapter describes C* library functions that provide grid communication.
These functions are faster than the general communication functions described
in Chapter 14. If you use any of the functions discussed in this chapter, include
the file <cscomm.h> in your program. You can also achieve grid communication
by using the pcoord function, as described in Chapter 10.

All grid communication functions are overloaded so that they can be used with
any arithmetic or aggregate data type.

Aspects of Grid Communication

There are several aspects to grid communication to consider before using these
functions:

= axis

=  direction

=  distance

®  border behavior

® behavior of inactive positions
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Axis

Grid communication functions let parallel variable elements communicate along
any axis of a shape. In a 2-dimensional shape like Figure 50, for example, you
can specify that elements communicate along axis 0 or along axis 1.

Axes 1
o| 0 1 2 3 16383

2 *s e

12.1.2

Figure 50. A 2-dimensional shape.

The functions from _grid, to_grid, from torus, and to_torus allow com-
munication along more than one axis — for example, an element could transmit
a value to another element by sending it down axis 0, then across axis 1.

Direction

Parallel variable elements can also communicate in either direction along an axis
using grid communication. In Figure 50, for example, parallel variable elements
at position [0][2] can communicate along axis 1 with elements to the right (posi-
tion [0][3]) or to the left (position [0][1]).
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Distance

Paralle] variables can communicate at any distance along an axis. For example,

parallel variable elements at position [0][0] in Figure 50 can communicate with
elements at position [0][16383].

Border Behavior

What happens when a parallel variable element at position [0][16383] in
Figure 50 tries to get a value from the right — off the border of the grid? The
behavior of grid communication at the border is handled in different ways by
different functions. Specifically:

®* In the functions from_grid, from_grid_dim, to_grid, and
to_grid_dim, you can specify a value that the element is to receive when
it tries to get a value from beyond the border. This value is referred to as
the fill value.

®* In the functions £rom_torus, £rom_torus_dim, to_torus, and
to_torus_dim, the element receives the value from the opposite border
of the grid — in this case, the element at position [0][16383] gets its value
from position [0][0]. This is known as wrapping.

Behavior of Inactive Positions

What happens when positions in the grid are inactive? For example, a parallel
variable element at position [0][0] tries to get the value of an element at position
[0][1], but position [0][1] is inactive.

Different functions handle inactive positions in different ways, depending on
whether parallel variables are seen as sending their values to other positions or
getting values from other positions. The distinction is the same one made for
parallel left indexing; see Section 10.1.6. Specifically:

= Ina get operation, a parallel variable element in an active position can get
a value from an element in an inactive position, but an element in an inac-
tive position cannot get a value from any position. The functions
from grid, from grid dim, from_torus, and £rom torus_dim
use get operations.
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® In a send operation, a paralle] variable element in an active position can
send a value to an element in an inactive position, but an element in an
inactive position cannot send its value. The functions to_grid,
to_grid dim, to_torus, and to_torus_dim use send operations.

Note that the issue of getting from or sending to inactive posmons requires pass-
ing some paralle] variables in the grid communication functions by reference,
rather than by value. See Chapter 10 for a discussion of this issue.

Table 3 summarizes the features of the grid communication functions.

Table 3. Features of grid communication functions.

Function Multiple Axes? Wrapping? Get or Send?
from_grid Yes No Get
from_grid_dim No No Get
from_torus Yes Yes Get
from_torus_dim No Yes Get
to_grid Yes No Send
to_grid dim No No Send
to_torus Yes Yes Send
to_torus_dim No Yes Send

The from_grid_dim Function

Use the £rom_grid dim function to communicate along one axis of a grid,
without wrapping. £rom_grid_dim is a get operation, as described in Chapter
10.

With Arithmetic Types

Like all grid communication functions, from_grid_dim can be used with arith-
metic data types, as well as with parallel structures and parallel arrays. The
version of £rom_grid dim for arithmetic data types has this definition:

May 1993
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type:current from grid dim (
type:current *sourcep,
type:current value,

int axis,

int distance);

where:

sourcep

value

axis

distance

is a scalar pointer to the parallel variable from which val-
ues are to be obtained. The parallel variable can be of any
arithmetic type; it must be of the current shape.

is a parallel variable of the current shape whose values are
to be used when elements try to get values from beyond
the border of the grid. The parallel variable must be of the
same arithmetic type as the parallel variable pointed to by

sourcep.

specifies the axis along which the communication is to
take place.

specifies how many positions along the axis the values are
to travel. For example, if distance is 2, each parallel
variable element gets a value from an element whose po-
sition is two greater along the specified axis. distance
can be a negative number, which reverses the direction in
which the data is to travel.

from_grid_dim returns the source values in their new positions. You can as-
sign these values to a parallel variable of the current shape and of the same
arithmetic type as the source paralle] variable; this “destination” paralle] variable
can be viewed as the parallel variable that is doing the “getting.” '

Note the difference between £rom grid_dim and the corresponding use of
pcoord described in Chapter 10: pcoord does not provide a fill value when an
element tries to get from beyond the border.

Examples

Figure 51 shows three parallel variables of the same shape.
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Note to users of CM-200 C*: The shape below, like others shown in the chapter,
is smaller than would be legal in the CM-200 implementation of C*, so that it’s
easier to visualize what is happening.

0| 10§11} 1213 1 2 314
1] 201 21| 22|23 1 2 314
2| 30| 313233 1 2 314
31 40| 41| 42|43 1 2 314
source dest £111

Figure 51. Three parallel variables of shape ShapeA.

The goal is for dest to get values of the parallel variable pointed to by sourcep
that are one position lower along axis 0. This is equivalent to scalar C* state-
ments like these (except that all operations happen at the same time):

[1] [0]dest
[2] [0]ldest
[3] [0]dest
[1] [1)dest

[0] [0] source;
[1] [0] source;
[2] [0] source;
[0] [1] source; /* . . . and so on */

In the case where dest tries to get a value of source from beyond the border
(for example, the dest element at position [0][0]), it is to use the value from the
corresponding element of £111.

The code below accomplishes this:

#include <cscomm.h>

shape [256] [256]Shapea;
int:ShapeA source, dest, fill;

/* Code to initialize parallel variables omitted. */

main ()
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with (Shapea)
dest = from grid_dim(&source, fill, 0, -1);
: !

Figure 52 shows the results.

Note that we use -1 for the distance argument, even though the values move
to higher-numbered positions along the axis. As mentioned above,
from_grid_dim is a get operation; in this case, the element in the higher-num-
bered position is viewed as getting the data from the lower-numbered position,
and that is why a negative distance is used.

Note also the values of £111 that are used when dest attempts to get from be-
yond the border of the grid.

dest = from _grid dim(&source, £il1ll1l, 0, -1);

source dest £111

Figure 52. An example of the £rom _grid_dim function.

Now let’s take the data in Figure 52 and move the values in dest two positions
lower along axis 1, but leaving them in dest. In scalar C* code:

]

[0] [0]ldest
(0] [1]dest
[1] [0]ldest

[0] [2]dest;
[0] [3]dest;
[1]1[2]dest; /* . . . and so on */

In this case, the source parallel variable is the same as the destination parallel
variable. This is legal. This statement does the job:
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dest = from grid dim(&dest, £ill, 1, 2);

A positive integer is used for the distance, because the clements in the lower-
numbered positions along the axis are getting data from the elements in the
higher-numbered positions.

Figure 53 shows the results.

Note that the elements of dest at positions [#][2] and [n][3] (where 7 is any axis
0 coordinate) are assigned the values from the corresponding elements of £111,
because they attempt to get values from beyond the border of the grid.

dest = from grid dim(&dest, £ill, 1, 2);

0

0| 1

1] 10

2| 20

3130
dest (before) dest (after) £111

Figure 53. Another example of the £rom_grid dim function.

When Positions Are Inactive

Finally, let’s see what happens when positions in a shape are inactive. The code
fragment below makes position [2] inactive, using the simple data in Figure 54,
and then calls £rom grid dim:

where (source != 7)
dest = from grid_dim(&source, £ill, 0, -1);

Figure 54 shows the results.
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where (source i= 7) [ ] active
dest = from_grid dim(&source, £ill, 0, -1); @inactive

source 3 5 teFA 9

dest 1 3 /f 7

£111 | 1 | 1 (47 1

Figure 54. An example of £rom_grid_dim when a position is inactive.

Since from _grid_dim is a get operation, these rules apply:

= Elements at active positions can get values from elements at inactive

positions.
Elements at inactive positions cannot perform any gets at all.

Elements at inactive border positions do not receive a fill value.

Note how these rules are applied in Figure 54:

= Position [2] is inactive, so it doesn’t get a value from position [1]. (It keeps
the value it had before the operation.)

» Position [3] gets a value from position [2], even though position [2] is
inactive.

12.2.2 With Parallel Data of Any Length

The definition of £rom_grid_dim for parallel data of any length is as follows:

void from grid dim (
void:current *destp,
void:current *sourcep,
void:current *valuep,

May 1993
Copyright © 1990-1993 Thinking Machines Corporation




int length,
int axis,
int distance);

In this version, the location pointed to by destp gets values from the location
pointed to by sourcep, using the axis and distance arguments to determine
the axis for the communication and how many positions along the axis the values
are to travel. If destp tries to get from beyond the border of the grid, it gets
values from the corresponding location pointed to by valuep instead. The loca-
tions pointed to by destp, sourcep, and valuep are all length bools long.

You can use this version of £rom_grid_dim to transfer data that is larger than
the standard data types — typically, this data would be in a parallel array or par-
allel structure. Note that theére is no return value, and the destination is specified
as the first argument to the function.

For example, in the code below, dest_struct gets the values of
source_struct that are four coordinates higher along axis 0. When this takes
dest_struct beyond the border of the grid, it gets the corresponding values of
value_struct. '

#include <cscomm.h>

shape [65536] ShapeA;
struct s {
int a;
int b;
};
struct S:ShapeA source_struct, dest_struct, value_struct;

main{)
{
with (ShapeA)
from grid dim(&dest_struct, &source_struct,
&value_struct,boolsizeof (source_struct), 0, 4);

12.3 The from_grid Function

The from grid lets data travel along more than one axis of the grid. Like
from_grid_dim, it is a get operation.
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With Arithmetic Types

The definition of £rom_grid (for the version that takes arithmetic types) is:

type:current from grid (
' type:current *sourcep,
type:current value,
int distance_along_axis 0, ... );

where sourcep, value, and the return value are defined as they were for
from grid_dim,

The argument distance_along_axis 0 specifies how many positions along
this axis the data is to travel. As with from_grid_dim, the sign of the integer
(positive or negative) indicates the direction of travel along the axis. The ellipsis
( ...) indicates a variable number of arguments. Each argument is an int that
represents the distance along succeeding axes that the data is to travel. You must
include as many arguments as there are axes in the current shape. If the data is
not to move along an axis, specify the distance for that axis as 0.

from_grid lets you combine movement along different axes. For example, in
the previous section we used two calls to £rom_grid_dim so that each dest
element got the value from the source element that was one position lower
along axis 0 and two positions higher along axis 1. This call to £rom_grid ac-
complishes the same thing:

dest = from grid(&source, fill, -1, 2);

The -1 argument specifies the direction and distance of the communication
along axis 0; the 2 argument specifies the direction and distance of the communi-
cation along axis 1. The movement along axis 1 takes place after the movement
along axis 0. That is, the dest elements first get the source elements one posi-
tion lower along axis 0; the dest elements that are two positions lower along
axis 1 then gets these values from these other dest elements.

Note an important difference between the single £rom grid call and the two
from grid &im calls, however. With £rom grid, the fill value is inserted
only after all data movement is completed. No fill values are inserted when ele-
ments try to get from beyond the border in intermediate steps. This ensures that
elements of the destination parallel variable receive fill values from correspond-
ing elements of the fill parallel variable. But it yields a different result from
consecutive £rom_grid_dim calls, where the fill value is inserted for each call.

Figure 55 shows the results of the f£rom_grid call shown above on the data in
Figure 51. Compare these results with those for the two £rom grid_dim calls
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shown in Figure 53 (the arrow on the left shows that [0] [2] source ends up at
[1] [0]ldest).

dest = from grid(&source, £ill, .-1, 2);

source dest £111

Figure 55. An example of the £rom _grid function.

from_grid handles inactive positions in the same way that from_grid_dim
does.

12.3.2 With Parallel Data of Any Length

Like from_grid dim, from grid has an overloaded version that can be used
with paralle]l data of any length. Its definition is:

void from_grid (
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int distance_along_axis 0, ... );

Once again, destp, sourcep, and valuep are pointers to parallel locations that
are length bools long. Specify the data movement for each axis in the argu-
ments distance_along_axis_n. destp gets the value of sourcep based on
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these arguments, unless this brings it beyond the border of the grid, in which case
it gets a value from the corresponding location pointed to by valuep.

The to_grid and to_grid_dim Functions

The to_grid and to_grid_dim functions are similar to from_grid and
from grid_dim, except that they are send operations instead of get operations.
Both pairs of functions provide grid communication, with substitution of a fill
value when the communication would otherwise go beyond the boundary of the
grid. Both provide overloadings for arithmetic and aggregate types. The differ-
ences between the get operations and the send operations are:

= in the way the distance argument is interpreted

= in the way inactive positions behave

These differences are described in more detail below.

With Arithmetic Types

The definitions of to_grid and to_grid_dim (for the versions that take arith-
metic types) are:

void to_grid (
type:current *destp,
type:current source,
type:current *valuep,
int distance_along_axis 0, ... );

void to_grid dim (
type:current *destp
type:current source,
type:current *valuep,
int axis,
int distance);

where:
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is a scalar pointer to the parallel variable to which values
are to be sent. This parallel variable can be of any arith-
metic type; it must be of the current shape.

is the parallel variable that is to send its values. It can be
of any arithmetic type; it must be of the current shape and
of the same type as the paralle]l variable pointed to by
destp.

is a scalar pointer to a fill parallel variable whose values
are to be used when elements of source try to send val-
ues to destinations beyond the border of the grid. It must
be of the current shape and have the same type as
source.

distance_along_axis_0

(for to_grid) specifies how many positions along axis
0 the values are to travel. For example, if dis-
tance_along_axis_0 is 2, each parallel variable
element of source sends a value to an element of the par-
alle] variable pointed to by destp whose position is two
greater along axis 0. Include a distance argument for each
dimension in the current shape. If the data is not to move
along an axis, specify the distance for that axis as 0. The
distance can be a negative number, which reverses the di-
rection in which the data is to travel.

axis (for to_grid_dim) specifies the axis for the
communication.
distance (for to_grid_dim) specifies how many positions along
axis the values are to travel, as discussed in the descrip-
tion of distance_along_axis 0.
There is no return value.

Note the way that the distance argument is interpreted in send operations like
to_grid and to_grid_dim. Specifying a positive integer for the distance
sends values to higher-numbered positions. This is different from the behavior
for get operations like from grid and from_grid_dim, where specifying a
positive integer for the distance gets values from higher-numbered positions.
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When Positions Are Inactive

Since to_grid and to_grid_dim are send operations, these rules apply when
positions are inactive:
* Elements at active positions can send values to elements at inactive
positions.
= Elements at inactive positions cannot send their values.
® Elements at border positions receive fill values even if they are inactive.

This follows the general behavior of send operations, in which elements
at inactive positions can be sent values.

Examples

The first example uses to_grid_dim to achieve the same result as the use of
from_grid dim shown in Figure 52. The goal is for source to send values to
elements of dest that are one position higher along axis 0. When the sending
goes beyond the border of the grid, values of the corresponding elements of £411
are used instead. This code accomplishes this:

to_grid dim(&dest, source, &fill, 0, 1);

The results are shown in Figure 56.

to_grid dim(sdest, source, &£ill, 0, 1);

source dest £111

Figure 56. An example of the to_grid_dim function.
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Similarly, to obtain the same results as those shown in Figure 53 for
for_grid_dim, use this code:

to_grid dim(&dest, dest, &fill, 1, -2);
These two calls to to_grid_dim are similar to this call to to_grid:
to_grid(&dest, source, &fill, 1, -2);

Note, however, that, as with from_grid, the fill values for to_grid are in-
serted only after all data movement has occurred. In this case, this produces a
slightly different result for the single to_grid call; see Figure 55.

In all cases, note that the difference from the corresponding £rom grid or
from grid dim call is that the sign of each distance argument is reversed.

The final example makes positions [0] and [2] inactive and then calls
to_grid dim:

where (source != 7)
to_grid_dim(&dest, source, &fill, 0, 1);

Figure 57 shows the results.

where (source I= 7)

to_grid dim(&dest, source, &fill, 0, 1);

source 7 A 5 % 9
dest g/t;;
£111 % 1 % 1

Figure 57. An example of to_grid_ dim when position are inactive.

Note how the rules for inactive positions and send operations are applied in
Figure 57:
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® [0]source and [2] source are at inactive positions, so they don’t send
their values to [1]1dest and [3] dest.

" [1]source sends its value to [2]dest, even though position [2] is
inactive.

" [0]£111 sends its value to [0] dest, even though position [0] is inactive.

12.4.2 With Parallel Data of Any Length

The definitions of to_grid and to_grid dim for parallel data of any length
are:

void to_grid (
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int distance_along_axis 0, ... );

void to_grid dim (
void:current *destp,
void:current *sourcep,
void:current *valuep,
int 'length,
int axis,
int distance);

These versions are useful if you want to transfer data in a parallel array or paral-
lel structure. As with the corresponding versions of from_grid and
from_grid dim, the length argument specifies the length in bools of the lo-
cations pointed to by destp, sourcep, and valuep. There is no return value,
and the destination is specified as the first argument to the function.

12.5 The from_torus and from_torus_dim Functions

A torus is a doughnut-shaped surface. The C* “torus” functions (two more are
discussed in the next section) use the grid as if it were wrapped into a torus, with
the opposite borders of the grid connected. If a value is required from beyond the
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border, it comes from the other side of the grid. Thus, these functions don’t need
the fill value used in the “grid” functions, since there is never a case where an
element will not be able to obtain a value because it is beyond the border.

Except for this difference, from_torus and from torus_dim are equivalent
to from gridand £rom_grid_dim. As with the other grid functions, there are
overloaded versions for use with all arithmetic and aggregate types.

With Arithmetic Types

The definitions of £rom_torus and from torus_dim (for the versions that
take arithmetic types) are:

type:current from torus
type:current *sourcep,
int distance_along_axis 0, ... );

type:current from torus_dim (
type:current *sourcep,
int axis,
int distance);

Let’s look at how the results change when we use these functions on data from
previous sections.

For example, let’s take the data from Figure 51 and use £rom_torus_dim in-
stead of £rom grid dim. The goal is the same: dest elements are to get the
values of source elements that are one position lower along axis 0:

dest = from_torus_dim(&source, 0, -1);

Note that from_torus_dim does not require a valuep argument, since values
wrap from the other side of the grid. The results of this statement are shown in
Figure 58. The arrows in the figure show the movement for two elements of
source: [0] [0]dest wraps around to get the value of [3] [0] source, and
[2] [3]1dest gets the value of [1] [3] source.
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dest = from_torus_dim(&source, 0, -1);

source dest

May 1993

Figure 58. An example of the from_torus_dim function.

Compare the results shown in Figure 58 with those for the equivalent
from grid_dim call, shown in Figure 52. The differences are only in the dest
elements that are at position [0][r]. £rom_grid _dim puts the value of the corre-
sponding element of £111 into the dest element. f£rom_torus_dim wraps
around to the other side of the grid and has the dest elements get the values of
the source elements at position [3][n].

Similarly, using the same source data, this from_torus call:
dest = from_torus(&source, -1, 2);

produces the results shown in Figure 59. Compare these resuits with those shown
in Figure 53, which are the results for the two from grid dim calls. Once
again, dest elements that previously were assigned values of £111 now get val-
ues of source elements from the other side of the grid. In Figure 59, the arrows
show where the value of [0] [3] source ends up: After the movement along
axis 0, [1] [3]1dest gets it, and after the movement along axis 1, it ends up
wrapping around to [1] [1] dest.
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dest = from_torus(&source, -1, 2);

Step 1:
source Movement
along axis 0
Step 2:
dest Movement
(before) along axis 1

Figure 59. An example of the £rom_torus function.

from_torus and from torus_dim are both get operations, so their handling
of inactive positions is the same as that of from_grid and from_grid_dim.

12.5.2 With Parallel Data of Any Length

The from torus and from torus_dim functions also have overloaded ver-
sions that can be used with paralle] data of any length. Their definitions are:

void from_torus(
void:current *destp,
void:current *sourcep,
int length,
int distance_along_axis 0, ... );

void from_torus_dim (
void:current *destp,
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void:current *sourcep,’
int length,

int axis,

int distance);

Note that these definitions are the same as those for £rom_grid and
from_grid dim, except that a valuep argument is not required, since values
wrap when they go beyond the border of the grid.

12.6 The to_torus and to_torus_dim Functions

The to_torus and to_torus_dim functions are send operations that provide
grid communication with wrapping to the other side of the grid. As with the other
grid communication functions, the _dim version provides communication along
one axis only, while the more general version provides communication along all
axes. Both functions have overloaded versions for all arithmetic and aggregate
types. '

12.6.1 With Arithmetic Types

The to_torus and to_torus_dim functions have these definitions when used
with an arithmetic type:

void to_torus (
type:current *destp,
type:current source,
int distance_along axis 0, ... ):

void to_torus dim (
type:current *destp,
type:current source,
int axis,
int distance);

where:

destp is a scalar pointer to the parallel variable to which values
are to be sent. This parallel variable can be of any arith-
metic type; it must be of the current shape.
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source is a parallel variable from which values are to be sent; it
must be of the current shape and have the same arithmetic
type as the parallel variable pointed to by destp.

distance_along axis 0

(for to_torus) specifies how many positions along axis
0 the values of source are to travel. If the distance is 2,
for example, source sends its value to the destination
element whose position is two greater along axis 0. In-
clude a distance argument for each dimension in the
current shape. If the data is not to move along an axis,
specify the distance for that axis as 0. The distance can be
a negative number, which reverses the direction in which
the data is to travel.

axis (for to_torus_dim) specifies the number of the axis
along which the values of source are to be sent.

distance (for to_torus_dim) specifies how many positions along
the axis the values of source are to be sent, as discussed
in the description of distance- _along_axis_0.

The behavior of inactive positions for to_torus and to_torus_dim is the
same as it is for to_grid and to_grid_dim: Elements of source at inactive
positions cannot send values, but source can send values to elements at inactive

positions.

Examples

The code below uses the source data also used in previous figures; it sends val-
ues of source to dest elements that are one position lower along axis 0:

to_torus dim(&dest, source, 0, -1);

The results are shown in Figure 60. Compare these results to those for the com-
parable call to from_torus_dim, shown in Figure 58. The arrows in the figure
show the movement of two elements of source: [0] [3] source wraps around
and sends its value to [3] [3]1dest; [3] [0] source sends its value to
[2] [0] dest.
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to_torus_dim(&dest, source, 0, -1);
6 1 2 3

gource dest

Figure 60. An example of the to_torus_dim function.

to_torus is similar to to_torus_dim, except that you must specify the data
movement for each axis, as you do for from_torus and £rom grid. This code
uses the same source data used in previous figures:

to_torus(&dest, source, -1, 2);

The results are shown in Figure 61. Compare these results to those for the com-
parable call to from_torus, shown in Figure 59. The atrows in the figure show
where [0] [3] source ends up after the movement along axis 0 and axis 1.
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to_torus (&dest, source, -1, 2);
0 1 2 3

Step 1:
Movement
along axis 0

Step 2:
Movement
along axis 1

dest
(before)

Figure 61. An example of the to_torus function.

In this example, we make a position inactive and call to_torus_dim:

where (source != 7)
to_torus_dim(&dest, source, 0, 1);

Figure 62 shows the results for some sample data.

where (source 1= 7) [ ] active
to_torus_dim(&dest, source, 0, 1); inactive

source 3 5\ % 9
Gest | 9 | 3 @

Figure 62. An example of to_torus_dlm when a position is inactive.

May 1993
Copyright © 19901993 Thinking Machines Corporation




Chapter 12. Grid Communication

173

Note how the rules for send operations with inactive positions are applied in
Figure 62:

® [1]source sends a value to [2]dest, even though position [2] is

inactive.
® Position [2] is inactive, so [2] source doesn’t send a value to [3] dest,
which keeps its original value from before the call.

12.6.2 With Paraliel Data of Any Length

The to_torus and to_torus_dim functions also have overloaded versions
that can be used with parallel arrays or parallel structures. Their definitions are:

void to_torus(
void:current *destp,
void:current *sourcep,
int length,
int distance_along axis 0, ... );

void to_torus_dim (
void:current *destp,
void:current *sourcep,
int length,
int axis,
int distance):

Note that these definitions are the same as those for from_torus and
from_torus_dim. But, as with the versions that use arithmetic types, the dis-

tance arguments are interpreted differently, and the behavior of inactive positions
is different.
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Chapter 13

Communication with Computation

This chapter discusses C* library functions that let you perform computations on
parallel values that are being transmitted. Most of these functions use grid com-
munication. The functions differ in these ways:

» The kinds of computation that are available for each function. See Sec-
tion 13.1.

® The way in which parallel variable elements are selected. For examplé,
some functions let you divide the parallel variable elements into groups
called scan classes. You can then operate on each scan class independ-
ently. See Section 13.2.

= The way in which the function reports the results of the computation. For
example, scan provides a running total of its computations; spread pro-
vides only the final result.

Include the file <cscomm.h> when calling any of the functions discussed in this
chapter.

13.1 What Kinds of Computation?

The scan, reduce, spread, multispread, and global functions let you
specify a combiner type that indicates the kind of computation or combining you
want carried out on the parallel data. Each of these functions is overloaded for
some subset of the combiner types listed in Table 4.
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Table 4. Combiner types.

Combiner Meaning

CMC_combiner_max Take the largest value among the specified
parallel variable elements.

CMC_combiner_min Take the smallest value among the specified
elements.

CMC_combiner_add Add the values of the specified elements.

CMC_combiner_copy Copy the values of the specified elements.

CMC_combiner_multiply Multiply the values of the specified elements.
CMC_combiner_logior Perform a bitwise logical inclusive OR on

the specified elements.
CMC_combiner_logxor Perform a bitwise logical exclusive OR on
the specified elements.
CMC_combiner_logand Perform a bitwise logical AND on the
specified elements.

These combiner types are also used by the send function, which is described in
the next chapter.

Choosing Elements

Several of the C* functions discussed in this chapter provide methods for choos-
ing the subsets of parallel variable elements on which they are to operate. The
terminology we use in referring to these subsets of elements comes from scan,
which is the most general of the functions that use these methods.

The Scan Class

Two positions belong to the same scan class if their coordinates differ only along
a specified axis. These functions use the concept of a scan class: scan, reduce,
copy_reduce, spread, copy_spread, enumerate, rank, and
multispread.
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To see how scan classes work, consider the 2-dimensional shape shown in
Figure 63.

Note for users of CM-200 C*: This and other shapes in this chapter are smaller
than legal size in the CM-200 implementation of C*, so that they are easy to

Axes —1
0' 0 1 2 3
0
1
2
j
Figure 63. A 4-by-4 shape.

If you specify axis 0 as an argument to one of the functions listed above, you get
the scan classes shown in Figure 64. Positions [0][0], [1][0], [2][0], and [3][0]
differ only in their coordinates for axis 0; therefore, they belong to the same scan
class. Position [0][1] does not belong to this scan class, because it has a different
axis 1 coordinate; it belongs to a scan class with positions [1][1], [2][1], and
311}

Thus, specifying axis O for this shape creates four separate scan classes, each of

which is a column of positions through axis 0 in the shape. Functions like scan
operate on each of these scan classes independently.

' ; Figure 64. Scan classes for axis 0 of a 2-dimensional shape.
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Specifying axis 1, on the other hand, creates four different scan classes, each one
consisting of a row of positions through axis 1 in the shape, as shown in
Figure 65.

Rnnne

AN

Figure 65. Scan classes for axis 1 of a 2-dimensional shape.

If you have a 1-dimensional shape, there is, of course, only one axis you can
specify, and only one scan class for the shape. You can, however, subdivide a
scan class, as we discuss below.

If you have a 3-dimensional shape, specifying an axis gives you a set of scan
classes consisting of the rows of positions that cross this axis. For example, in
a 2-by-2-by-2 shape, specifying axis 0 creates these four scan classes:

[0][0][0] and [1]{0][0]
[0][1][0] and [1][1][0]
[0][0][1] and [1][0][1]
[O[[1][1] and [1][1][1]

To operate on more than one dimension in a multi-dimensional shape (for exam-
ple, on planes of positions instead of rows of positions), you must use the
multispread or copy_multispread function; these functions are discussed
in Section 13.8.
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The Scan Subclass

Only active positions participate in computations within a scan class. The active
positions within a scan class are referred to as the scan subclass.

The Scan Set

There may be times when you want a function to operate independently on dif-
ferent parts of a scan subclass. The scan, enumerate, and rank functions let
you do this by subdividing a scan subclass into scan sets.

To create scan sets, declare a bool-size parallel variable of the shape on which
the function is to operate, and initialize it to 0. This parallel variable is referred
to as the sbit; it is used as the sbit argument to the functions listed above. As-
sign a 1 to an element of this paralle]l variable to mark the beginning of a scan
set at that element’s position. In the simplest case, the scan set for each position
starts either at the beginning of the scan subclass, or at the nearest position below
it in the scan subclass that has its sbit set to 1.

Figure 66 shows a 1-dimensional shape divided into scan sets. In the figure, the
scan set for position 1, for example, consists of positions 0 and 1 (the scan sub-
class starts at position 0, so the scan set starts there also, even if the sbit for that
position isn’t set to 1). The scan set for position 7 consists of positions 5, 6, and
7, since [5]1sbit is set to 1, thus starting a new scan set.

0 1 2 3 4 5 6 7
% sbit [ o | o | o| 1 | o] 1| of o
; —
| —_—
! scan sets for
each position >
of a shape —>
—_—
—
 —
—_—
Figure 66. Scan sets in a 1-dimensional shape.
May 1993
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Note than scan sets include only active positions; see Section 13.2.3, however,
for a more in-depth discussion of inactive positions and scan sefs.

To show how scan sets work, let’s use an example in which we keep a running
total of the values in the parallel variable data (this is a scan operation, as dis-
cussed in Section 13.3). The results are shown in Figure 67.

sbit 0 0 0 1 0 1 0 0

data 0 1 2 3 4 5 6 7

running total| O 1 3 3 7 5 11 | 18

Figure 67. An operation that provides a running total, using scan sets.

In the example, [1] running_total contains the sum of [0] data and
[1] data, since 0 and 1 are the positions in its scan set. [3] running_total
contains only the value in [3]data, since [3]sbit is set to 1, thus starting a
new scan set in this position.

You actually have more flexibility than this in how you can divide up scan sub-
classes:

® Whether an operation is inclusive or exclusive affects the way scan sets are
interpreted; see “Inclusive and Exclusive Operations,” below. The exam-
ple in Figure 67 shows an inclusive operation.

= There are two ways of interpreting the sbit; see Section 13.2.3. In particu-
lar, this affects the way scan classes are divided when there are inactive
positions, and when an operation proceeds in a downward direction. The
example in Figure 67 shows an operation that proceeds in an upward
direction.
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Inclusive and Exclusive Operations

The way in which scan sets work when you are performing a particular operation
depends on whether the operation is inclusive or exclusive. (NOTE: In this sec-
tion, we are ignoring the effect of segment bits and start bits; these are discussed
in the next section.)

In an inclusive operation (specified by cMC_1inclusive), an element partici-
pates in the operation for its position—in other words, the scan set for a position
contains that position. As we mentioned, Figure 67 shows the results of an inclu-
sive operation.

In an exclusive operation (specified by cMC_exclusive), the scan set for an
element does not contain the element itself — in other words, it does not partici-
pate in the operation for its position. Figure 68 shows the results of an exclusive
operation, using the same data as that shown in Figure 67.

sbit 0 0 0 1 0 1 0 0

data 0 1 2 3 4 5 6 7

running total| 0 0 1 0 3 0 5 | 11

May 1993

Figure 68. An exclusive operation on scan sets.

Note the difference between the two results. In the inclusive operation, for exam-
ple, [2]running total receives the running total for [0]data, [1]data,
and [2] data,; in the exclusive operation, [2] running_total receives the run-
ning total only for [0] data and [1]data. When there are no preceding
elements in the scan set (for example, in [3] running_total), the element re-
ceives the identity for the operation.
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13.2.3 Segment Bits and Start Bits

There are two different kinds of sbits: segment bits and start bits. Use the smode
argument to the scan, enumerate, or rank function to specify which kind of
sbit you want, as discussed below.

if smode Is CMC_segment_bit

If the value of the smode argument is CMC_segment_bi t, the sbit is considered
a segment bit, and it divides a scan subclass into segments, as follows:

® An sbit element set to 1 starts a new segment, whether or not the element
appears in an active position.

® The way in which the segment bit divides the scan subclass is not affected
by the direction of the operation.

® Operations in one segment never affect values of elements in another
segment.

If smode Is CMC_start_bit

If the value of the smode argument is CMC_start_bit, the sbit is considered
a start bit, and scan classes are divided as follows:

® Ansbit element set to 1 divides a scan subclass only if its position is active.
® The division is affected by the direction of the operation. When the direc-
tion is downward, for example, the division occurs from the higher

coordinate to the lower coordinate.

= When an operation is exclusive, the position whose sbit element is set to
1 will receive a value from the preceding scan set.

These differences between segment bits and start bits are discussed below.
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Inactive Positions

When the sbit is a segment bit, a new scan set is created, even though the position
where it starts is inactive. Figure 69 shows an example (the scan sets displayed

are for positions [2], [4], and [7]).
0 2 3 4 6 7

&
segment bit| o | o | o [/ o | 1| o] 0

- —P=  SCan sets

7
data 0 1 2 ﬁ 4 5 6 7

>
running total| o 1 3 % 4 5 11 | 18

Figure 69. An inclusive operation in an upward direction
on segment-bit scan sets, with an inactive position.

Note that position [3] does not participate in the operation, even though it starts -
a new scan set.

A start bit does not start a scan set if its position is inactive. Figure 70 is an exam-
ple. Note that the scan set for position [4] begins at position [0], not at position
[3], as in Figure 69.
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running total| o 1 3 % 7 5 | 11| 18

start bit | 0 [ 0 | © "’7/

7
0
~¥»  scansets

data 0 1 2{///4 5 6 7
.

Figure 70. An inclusive operation in an upward direction
on start-bit scan sets, with an inactive position.

The Direction of the Operation

When the direction of the operation is upward, it proceeds from lower-numbered
positions to higher-numbered positions along the scan subclass. Both kinds of
sbits divide the scan subclass in the way when the direction is upward (pro-
vided that all positions are active); ss:e?igure 66 for an example. You specify an
upward direction with the argument cMC_upward.

When the direction of the operation is downward (specified by the argument
CcMC_downward), the operation proceeds from higher-numbered positions to
lower-numbered positions along the scan subclass. In this case, segment bits di-
vide the scan subclass in the same way as the sbits shown in Figure 66; however,
since the operation proceeds in a downward direction, this means that a segment
bit ends a scan set, and the operation begins again in the position with the next
lowest coordinate. Figure 71 is an example; it shows the scan sets for positions
[0], [3], and [5].
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segment_bit | 0 0 0 1 0 1 0 0

- - - scan sets

data 0 1 2 3 4 5 6 7

running total| 3 3 2 7 4 18 | 13 | 7

Figure 71, An inclusive operation in a downward direction
on segment-bit scan sets,

Start-bit scan sets, however, follow the downward direction; in other words, start
bits start scan sets, rather than ending them. Figure 72 is an example; it shows
the scan sets for positions [0], [4], and [6].

start bit | 0 0 0 1 0 1 0 0

-t - - scan sets

data 0 1 2 3 4 5 6 7

running total| 6 6 5 3 9 5 13 7

Figure 72. An inclusive operation in a downward direction
on start-bit scan sets.
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Data from Another Scan Set

In exclusive operations on start-bit scan sets, the first position in a scan set re-
ceives the result of the operation for the preceding scan set, if there is one.
Figure 73 is an example.

start bit [ 0 [ o | o | 2 | 0o | 2| o] o

data 0 1 2 3 4 5 6 7

running_ total| o0 0 1 3 3 7 5 | 11

13.3

Figure 73. An exclusive operation in an upward direction
with start bits.

Compare these results with those shown in Figure 68, which assumes that the sbit
is a segment bit. [3] running_total and [5] running total receive the re-
sults from the preceding scan set, rather than 0. [0] running_total still
receives 0 (the identity for the operation) because there is no preceding scan set.

What constitutes a “preceding™ scan set depends on the direction of the opera-
tion, of course. In a downward direction, scan sets with higher-numbered
coordinates along the axis precede scan sets with lower-numbered coordinates.

The scan Function

Use the scan function to provide running results for operations on the scan sets
you specify.

The definition of scan is:

type:current scan (
type:current source,
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int axis,

CMC_combiner_t combiner,
CMC_communication_direction_t direction,
CMC_segment_mode_t smode,

bool:current *sbitp,
CMC_scan_inclusion_t inclusion);

where:
source is the paralle] variable whose values are to be used in the
operation. It must be of the current shape, and it can have
any arithmetic type.
axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner speciﬁes the type of operation that scan is to carry out.
Possible values are listed in Section 13.1.

direction  specifies the direction of the operation. Possible values
are CMC_upward and CMC_downward.

smode specifies whether the sbit is a segment bit or a start bit; see
Section 13.2.3. Possible values are cMC_start_bit,
CMC_segment_bit, and CMC_none. Specify CMC_none
if there is no sbit.

sbitp is a scalar pointer to a bool-size parallel variable of the
current shape. This parallel variable is the sbit, which cre-
ates scan sets for the operation. Specify CMC_no_£ield
if there is no sbit.

inclusion  specifies whether the operation is exclusive or inclusive;
see “Inclusive and Exclusive Operations,” above. Possi-
ble values are CMC_exclusive and CMC_inclusive.

The function returns the result of the scan in a parallel variable of the current
shape and with the same type as source.

The types CMC_combiner_t, CMC_communication_direction_t,
CMC_segment_mode_t, and CMC_scan_inclusion_t are defined by the

compiler.

~ The scan function provides a running result of the operation you specify on the
parallel variable you specify. If you assign this result to a parallel variable of the
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current shape, each element of the parallel variable receives the running result
for its position. The operation is carried out independently for each scan set.

13.3.1 Examples

The example below adds the values of data in an upward direction and assigns
the running result to running total; there is no sbit, and the operation is in-
clusive. The results are shown in Figure 74.

running total = scan(data, 0, CMC_combiner_add,
CMC_upward, CMC_none, CMC no_field, CMC_inclusive);

running total = scan(data, 0, CMC_combiner_add,
CMC_upward, CMC none, CMC no_field, CMC_inclusive);

data 4 7 9 5 3 5 9 6

running total | 4 | 11 | 20 | 25 | 28 | 33 | 42 | 48

Figure 74. An example of the scan function with no sbit.

The next example assigns the minimum value of data in the scan set to
running min. The direction is downward, the operation is inclusive, and the
sbit is a start bit. The results are shown in Figure 75.

running min = scan(data, 0, CMC_combiner min,
CMC_downward, CMC_start_bit, &start_bit,
CMC_inclusive);
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running min = scan(data, 0, CMC_combiner_min,
CMC_downward, CMC_start_bit, &start_bit,
CMC_inclusive) ;

0 1 2 3 4 5 6 7
start_bit | 0 0 0 0 1 0 0 0

data | 4 7 9 5 3 5 9 6

running_min | 3 3 3 3 3 5 | 6 6

Figure 75. An example of the scan function with a start bit and a downward direction.

Note that you would get a different result in this example if the sbit were a seg-
ment bit, since segment bits and start bits behave differently when the direction
is downward.

The example below multiplies the values of data in the scan set and assigns the
product to running_product. The direction is upward, the operation is exclu-
sive, and the sbit is a segment bit. The results are shown in Figure 76.

running product = scan(data, 0, CMC_combiner multiply,
CMC upward, CMC_segment bit,
&segment_bit, CMC_exclusive);

running product = scan(data, 0, ‘
CMC_combiner_multiply, CMC_upward, CMC_segment_bit,
&segment_bit, CMC_exclusive);

segment bit | 0 | o [ o [ 0o |1 [ o o] 0o

data 4 7 9 5 3 5 9 6

running product | 1 4 28 | 252 1 3 15 | 135

Figure 76. An example of the scan function using a segment bit
and an exclusive operation.
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These examples are of a 1-dimensional shape, which by definition has only one
scan class. If a shape has more than one dimension, more than one scan class is
created, and scan carries out the operation on all scan subclasses (or scan sets,
if the sbit is used) at the same time.

The destination parallel variable can be the same as the source parallel variable.
In other words, a statement like this is legal:

data = scan(data, 0, CMC_combiner_add, CMC_upward,
CMC_none, CMC _no_field, CMC_inclusive);

In this case, the elements of data are overwritten with the results of the
operation.

The reduce and copy_reduce Functions

The reduce Function

Use the reduce function to put the result of an operation into a single parallel
variable element in each scan subclass.

The reduce function has this definition:

void reduce (
type:current *destp
type:current source,
int axis,
CMC_combiner_t combiner,
int to_coord);

where:
destp is a scalar pointer to a parallel variable, of the current
shape and of any arithmetic type. One element of each
scan subclass of this paralle] variable receives the result
of the operation. :
source is a parallel variable (of the current shape) whose values

are to be used in the operation. It must be of the same type
as the parallel variable pointed to by destp.
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axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner specifies the type of operation that reduce is to carry out.
Possible values are cMC_combiner_max, CMC_com-
biner_min, CMC_comblner_addqd,
CMC_combiner_loglor, CMC_combiner_logxor,
and CMC_combiner_logand.

to_coord specifies the coordinate of the parallel variable pointed to
by destp that is to receive the result of the operation.

Note these differences between reduce and scan:

* reduce puts the final result of the operation into a single parallel variable
element of the scan subclass; it does not produce a running result.

= reduce does not use scan sets; therefore, it does not have the arguments
smode and sbit.

= Copying with reduction is handled as a separate function, which is dis-
cussed below.

Elements of source that are at inactive positions do not participate in the opera-
tion. If a position specified by to_coord is inactive, that element of dest does
not receive the result.

dest can be the same parallel variable as source; the result simply overwrites
the value(s) in the specified element(s).

An Example

The statement below puts the maximum value of data into element 0 of max.
The results are shown in Figure 77.

reduce (&max, data, 0, CMC_combiner max, 0);
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data 4 7 9 5 3 5 9 6

Figure 77. An example of the reduce function.

Incidentally, this statement is virtually equivalent to this C* statement:
[0lmax = >?= data;
But note these points:

= If position [0] were inactive, the assignment statement above would work;
if you used reduce, the reduction would not take place.

® The equivalence holds only for 1-dimensional shapes. In shapes with more
dimensions, reduce carries out its operation separately for each scan sub-
class, whereas the reduction assignment carries out its operation once for
all elements of the parallel variable.

13.4.2 The copy_reduce Function

Use the copy_reduce function to copy a value from one paralle] variable ele-
ment of a scan subclass to another parallel variable element.

The definition of copy_reduce is:

void copy_reduce (
type:current *destp
type:current source,
int axis,
int to_coord,
int from coord);
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The arguments are the same as for the reduce function, except that there is a
from_coord argument instead of a combiner. £rom_coozrd specifies the ele-
ment of source from which the value is to be copied. It is copied into the
to_coord element of the parallel variable pointed to by destp for each scan
- subclass. If either £rom coord or to_coord specifies an inactive position, the
copying does not take place for that scan subclass.

An Example

This example copies the values of elements in row 1 of data into elements of
row 0 of copy:

copy_reduce (&copy, data, 0, 0, 1);

The results for some sample values are shown in Figure 78.

copy_reduce (&copy, data, 0, 0, 1);

data 1] 10|11]12]13 copy

May 1993

Figure 78. An example of the copy_reduce function.

If the example of copy_reduce shown in Figure 78 were applied to a 1-dimen-
sional shape, it would be equivalent to:

[0lJcopy = [1ldata;

If position [0] were inactive, however, the results would be different. [0] copy
would get the result from [1] data if you used the assignment statement above;
it would not get the value if you used copy_reduce.
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13.5 The spread and copy_spread Functions

13.5.1 The spread Function

Use the spread function to place the result of an operation into all the elements
of a specified parallel variable in a scan subclass.

The spread function has this definition:

type:current spread (
type:current source,
int axis,
CMC_combiner_t combiner);

where:
source is a parallel variable (of the current shape) whose values
are to be used in the operation. It can have any arithmetic
type.
axis specifies the axis along which the scan class or classes are
to be created; see Section 13.2.

combiner specifies the type of operation that spread is to carry out.
Possible values are cMC_combiner_max, CMC_com-
biner_min, CMC_combiner_add,
CMC_combiner_logior, CMC_combiner_logxor,
and cMC_combiner_logand. See Section 13.1.

spread returns its result in a parallel variable of the current shape; the parallel
variable has the same type as source. This destination parallel variable can be
the same as the source paralle] variable, in which case the elements of the source
parallel variable are overwritten with the result.

The spread function “spreads” the result of an operation into all active elements
of the destination parallel variable in a scan subclass. Like reduce, spread
does not use scan sets, and it does not have a CMC_combiner_copy operation;
copying is handled by the copy_spread function, as discussed below.

Inactive positions do not participate in the operation.
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An Example

The code below adds the values of the elements in data in the scan subclasses
of axis 1, and assigns the result to total. The results for sample data are shown
in Figure 79.

total = spread (data, 1, CMC_combiner_add);

total = spread (data, 1, CMC_combiner_add):;

0 1 2 3

ol of1]2]3 6|6 |66
data 1| 10]11]12(13 total | 46 | 46 | 46 | 46
2| 20{21]22(23 86 | 86 | 86 | 86

13.5.2

May 1993

Figure 79. An example of the spread function.

The copy_spread Function

Use the copy_spread function to copy a value from an element of a parallel
variable in a scan subclass to all elements of a parallel variable in the scan
subclass.

The copy_spread function has this definition:

type:current copy_spread (
type:current *sourcep,
int axis,
int coordinate);

where:

sourcep is a scalar pointer to a parallel variable, one value of
which is to be copied.
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axis specifies the axis along which the scan class or classes are
to be created.

coordinate is the coordinate along axis that specifies the source par-
allel variable element whose value is to be copied.

The function returns a parallel variable of the current shape and the same arith-
metic type as the parallel variable pointed to by sourcep, containing the results
of the operation.

If a specified element of the source parallel variable is inactive, its value is cop-
ied. However, inactive positions of the destination parallel variable do not
receive a result.

An Example

The code below copies the value from element [n][1] of data to elements of
copy in the same scan subclass along axis 1. The results are shown in Figure 80.

copy = copy_spread(&data, 1, 1);

copy = copy_spread(&data, 1, 1);

0| 01} 2|3 111111
data 1) 10(11}12]13 copy l11j11j11})11
2|1 2021|2223 21212121

Figure 80. An example of the copy_spread function.

Note that, for a 1-dimensional shape, the above statement is equivalent to this
statement:

copy = [lldata;

unless position [1] is inactive. In that case, the assignment statement works;
copy_spread, however, would not copy [1] data.
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The enumerate Function

Use the enumerate function to place in each active element of a parallel vari-
able the size of its scan set. As we discuss in more detail below, enumerate is
a generalized version of the pcoord function.

The enumerate function has this definition:

unsigned int:current enumerate (
int axis,
CMC_communication _direction_t direction,
CMC_scan_inclusion_t inclusion,
CMC_segment_mode_t smode,
bool:current *sbitp);

All the parameters for enumerate have the same meanings and take the same
values as the corresponding parameters for the scan function; see Section 13.3.
Like scan, enumerate lets you specify a direction, an sbit, and whether the
operation is to be exclusive or inclusive. Note, however, that the return value is
an unsigned int of the current shape.

If you specify cMC_inclusive, enumerate includes each position in calculat-
ing the size of the scan set for that position. If you specify cMC_exclusive,
enumerate does not include the position in calculating the size of its scan set.

An inactive position does not receive a value and is not included in the calcula-
tion of values for other positions; see the third example, below.

Examples

The first example does an exclusive enumerate in an upward direction, ignoring
the sbit, and assigning the result to number. The results are shown in Figure 81.

number = enumerate(0, CMC upward,
"~ CMC_exclusive, CMC_none, CMC _no_field);
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number = enumerate(0, CMC upward, CMC_exclusive, CMC_none,
CMC_no_£ield);

number 0 1 2 3 4 5 6 7

Figure 81. An example of the enumerate function without an shit.

This is exactly equivalent to this use of pcoord when all positions are active:
number = pcoord(0) ;

Both functions initialize each parallel variable element to its coordinate along the
axis. The enumerate function, however, is more versatile than pcooxd. In the
next example, enumerate uses the sbit as a start bit and proceeds in a downward
direction, using the inclusive mode:

number = enumerate(0, CMC _downward, CMC_inclusive,
CMC_start bit, &start_bit);

The results are shown in Figure 82.

number = enumerate (0, CMC_downward,
CMC_inclusive, CMC start_bit, &start_bit);

0 1 2 3 4 5 6 7

start bit| 0 0 0 0 1 0 0 0

number

U
F
w
N
'—l
w
[\M]
'.-l

Figure 82. An example of the enumerate function
with a start bit and a downward direction.
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In the example below, the sbit is a segment bit, the enumerate is exclusive, the
direction is upward, and position 2 is inactive. The results are shown in

Figure 83.

where (pl I= 9)
number = enumerate (0, CMC _upward, CMC_exclusive,
CMC_segment_bit, &segment_bit);

where (pl 1= 9) D active
number = enumerate (0, CMC_upward, CMC exclusive, __ =
CMC_segment _bit, &segment_bit); (/] inactive

0 1 3 4 5 6 7

2
segment_bit | 0 0 % 0 1 0 0 0
p1| 4 7 ?/j 5 3 5 8 6

pumber | o 1 f’/ﬁ 2 0 1 2 3

Figure 83. An example of the enumerate function using a segment bit
and an exclusive operation, with an inactive position.

Note that the inactive position is not included in the enumeration.

13.7 The rank Function

Use the rank function to produce a numerical ranking of the values of parallel
variable elements in a scan set.

The definition of rank is:

unsigned int:current rank (
type:current source,
int axis,
CMC_communication_direction_t direction,
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CMC_segment_mode_t smode,
bool:current *sbitp);

The parameters for rank have the same meanings and take the same values as
the corresponding parameters for the scan function; see Section 13.3. Like scan
and enumerate, rank lets you specify a direction and an sbit. It does not, how-
ever, let you specify that its operation is exclusive; the operation can only be
inclusive. Also, note the behavior of rank with scan sets discussed below. Like
the enumerate function, rank returns an unsigned int of the current shape.

The rank function returns, for each active position, the rank of the value of the
specified parallel variable at that position in its scan set. Inactive positions are
not included in the determination of the rank for other positions, and they do not
receive a rank themselves. The ranking is from O to n-1, where n is the total
number of positions in the scan set. The ranks are assigned as follows:

= When the direction is upward, the lowest value is assigned rank 0.
®  When the direction is downward, the highest value is assigned rank O.

= If more than one element has the same value, their ranks are assigned arbi-
trarily within the range of ranks they represent.

® An sbit restarts the ranking of values within the scan set; however, it does
not restart the values assigned to the ranks. This behavior is different from
that of other functions. For example, if a scan set extends from position
[4] through position [15], the ranks assigned within this scan set are 4
through 15, not 0 through 11.

13.7.1 Examples

The first example has no sbit and ranks the values of data in a upward direction;
it assigns the ranks to data_rank. The results are shown in Figure 84.

data_rank = rank(data, 0,
CMC_upward, CMC_none, CMC no_field);
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data_rank = rank(data, 0, CMC upward, CMC_none,
CMC_no_£ield);

data 4 7 9 5 3 5 9 6

data_rank 1 5 6 2 0 3 7 4

Figure 84. An example of the rank function with no shit.

In the next example, the sbit is a segment bit, the direction is downward, and
position 1 is inactive. The results are shown in Figure 85.

where (data != 7)
data_rank = rank(data, 0, CMC_downward,
CMC_segment_bit, &segment_bit);

D active
where (data 1= 7) 7] inactive
data_rank = rank(data, 0, CMC_downward,
.CMC_segment_bit, &segment bit);

1. 2 3 4 5 6 7
/)
segment_bit | 0 /1 0 0 1 0 0 0

data 4VAQ 5 3 5 ° 6

data_rank 5%3 4|6 | 2|01

Figure 85. An example of the rank function using a segment bit
and a downward direction, with an inactive position.
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The final example uses rank along with parallel left indexing to actually reorder
parallel variable elements according to their rank:

[rank (data, 0, CMC_upward, CMC_none,
CMC_no_field) Jsorted = data;

In this example, data sends values to sorted, using the return values from
rank as an index. The key here is to have rank operate on the parallel variable
that is doing the sending. The results are shown in Figure 86.

[rank (data, 0, CMC_upward, CMC none,

CMC _no_fileld)]sorted = data;

data 4 7 9 5 3 5 9 6 -

sorted 3 4 5 5 6 7 9 9

Figure 86. Using rank as a parallel left index to reorder parallel
variable elements according to their ranks.

Note how values move in the example: [0] data, for example, has a rank of 1;
therefore, its value (4) is sent to [1] sorted.

You can also achieve the same result using the make_send_address and send

- functions along with rank; see Section 14.3.3.

13.8

The multispread Function

The mul tispread function is like the spread function, except that you can use
it to spread the result of an operation along more than one axis at the same time.
This is useful in shapes that have more than two dimensions. For example, in a
3-dimensional shape, you can use spread to spread results along any one of the

May 1993
Copyright © 19901993 Thinking Machines Corporation



203

dimensions; multispread lets you spread results through entire planes of posi-
tions instead of along a single dimension.

To see how this works, consider the simple 8-position 2-by-2-by-2 shape shown

in Figure 87.
2
Axes 1
” ’o ',
) 1 =
0
1 i
0
Figure 87. A 3-dimensional shape,

As we mentioned in Section 13.2.1, specifying axis 0 creates four scan classes
for this shape:

[0][0][0] and [1}[0]{0]
[0][1}[0] and [1][1][0]
[0][0]{1] and [1][0}{1]
[0][1]{1] and [1][1]{1]

In each scan class, the positions differ only along axis 0. These scan classes are
shown in Figure 88.
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Figure 88. Scan classes in a 3-dimensional shape.

For the mul tispread function, you can specify more than one axis along which
the positions can differ. In this case, let the positions differ along axes 0 and 1;
axis 2 is fixed. This results in two sets of positions:

(o] [0] [0]
[1] [0l [0]
[0] [1] [0]
(1] [1] [0]

and:

o] [0] [1]
[1] [0] [1]
(0] [1] [1]
[1] [1] [1]

Figure 89 shows these two sets of positions. The sets of positions in which the
positions are allowed to differ along more than one axis are called hyperplanes.
Scan classes are therefore a special case of hyperplanes, in which the positions
can differ along only one axis. The mul tispread function operates on any kind
of hyperplane.
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Axes 1

hyperplane

13.8.1
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Figure 89. Hyperplanes in a 3-dimensional shape.

The multispread function has this definition:

type:current multispread (
type:current source,
unsigned int axis_mask,
CMC_combiner_t combiner) ;

The only difference between this definition and that of spread is the
axis_mask parameter. The axis_mask parameter is a bit mask that specifies
the axes along which the positions in a hyperplane are allowed to differ. For ex-
ample, use a bit mask of 3 to specify axes 0 and 1; use 6 to specify axes 1 and 2.

The example below assumes a 3-dimensional shape like the one shown above.
In it, the values of source in the hyperplanes described by axes 0 and 1 are
added, and the results are spread to all elements of dest in the same hyperplane.

dest = multispread(source, 3, CMC_combiner_add) ;

The copy_multispread Function

There is also a copy_multispread function, comparable to the copy_spread
function, but available for use on hyperplanes instead of scan classes. Using
copy_multispread, however, requires an understanding of send addresses,
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which are discussed in the next chapter. We therefore defer discussion of this
function until Section 14.5.

The global Function

Use the global function to perform reduction operations on a parallel variable
and assign the result to a scalar variable.

The global function has this definition:

type global (

type:current source,
CMC_combiner_t combiner) ;

where:

source

combiner

is a parallel variable (of the current shape and any arith-
metic type) upon whose values the reduction operation is
to be performed.

specifies the reduction operation. Possible values are
CMC_combiner_ max, CMC combiner_min, CMC com-
biner_add, CMC_combiner_loglorz,
CMC_combiner_logxoxr, and CMC_con-
biner_logand; see Section 13.1 for definitions of these
values.

The function returns a scalar variable of the same type as source.

The global function provides an alternative method for performing certain re-
duction operations. For example, these two statements are equivalent (where s1

sl = |= pl;

and:

- is a scalar variable and p1 is a paralle] variable of the same type):

sl = global (pl, CMC_combiner_logior);

Both do a bitwise inclusive OR of p1 and assign the result to s1.
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Note that global does not have a combiner value for the reduction assignment
operator ~= (negative of the sum of the parallel values).

The global function operates only on active positions.
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14.1
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General Communication

The C* communications functions we have discussed so far have required that
the source and destination parallel variables be of the current shape (except for
global, where the destination is a scalar variable), and that the communication
be in regular patterns — that is, all elements transfer their values the same num-
ber of positions in the same direction. In this chapter, we introduce functions that
allow communication in which: ' '

®  One of the parallel variables need not be of the current shape, and
= The communication need not be in a regular pattern.

The get and send functions described in this chapter provide communication
comparable to that offered by parallel left indexing; see Chapter 10.

The read_from position function described in this chapter provide commu-
nication comparable to that offered by assigning a scalar-indexed parallel
variable to a scalar variable; write_to_position is comparable to assigning
a scalar variable to a scalar-indexed parallel variable. The read_from_pvar
function reads data from a parallel variable into a scalar array; write_to_pvar
writes data from an array to a parallel variable.

Include the header file <cscomm.h> when calling any of the functions discussed
in this chapter.

The make_send_address Function

Grid communication requires knowing the coordinates of parallel variable ele-
ments in the shape. More information is required for general communication.
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14.1.1

Specifically, you need to supply a send address for a parallel variable element’s
position. This send address, along with a position’s shape, uniquely identifies a
position among all positions in all shapes; thus, you can use this address when
an element of the current shape is communicating with an element that is of a
different shape.

Use the make_send_address function to obtain a send address for one or more
positions. make_send address is an overloaded function that has different
versions depending on these conditions:

®  Whether you want to return a single address or multiple addresses. Multi-
ple addresses are returned as a parallel variable of the current shape.

s Whether you specify axis coordinates for the position in a stdargs list or
in an array. The choice is the same as that for the allocate_shape func-
tion, which we discussed in Section 9.3. If you know the rank of the
position’s shape, it is easier to use the stdargs version. If the rank will not
be known until run time, you must use an array.

Obtaining a Single Send Address

To obtain a send address for a single position, use make_send address with
one of these formats:

CMC_sendaddr_t make send address (
shape s,
int axis_0_coord, ...);

or:

CMC_sendaddr_t make_send_address (
shape s,
int axes[]);

where:

8 is the shape to which the position whose address you are
obtaining belongs.

axis_0_coord
(in the first version) specifies the position’s coordinate
along axis 0. Specify as many coordinates as there are
axes in the shape.
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14.1.2
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axes| ] (in the second version) is an array that contains the posi-
tion’s coordinates.

The function returns a scalar value (of type cMC_sendaddr_t) that is the send
address of the position. This address is returned even if the position is inactive.

Note that the shape you specify in the parameter list need not be the current
shape.

An Example

The code below calculates the send address of position [77]{44] in shape image
and assigns this address to the scalar variable addr:

CMC_sendaddr_t addr;
addr = make_send address(image, 77, 44);

Obtaining Muliiple Send Addresses

To obtain send addresses for more than one position, use make_send address
with one of these formats:

CMC_sendaddr_t:current make_send address(
shape s,
int:current axis_0_coord, ...);

CMC_sendaddr_t:current make send_address (
shape s,
int:current axesll);

These formats are the same as the ones shown in Section 14.1.1, except that the
axis_n_coord arguments take parallel ints of the current shape, and the func-
tion returns a parallel variable of the current shape.

The value in each element of the parallel variable you specify for an axis of shape
s represents a coordinate along that axis. The corresponding elements of the par-
allel variables that represent all the axes of the shape therefore fully specify a
position in shape s. The function returns the send address for each position speci-
fied in this way. These send addresses are returned as the values of elements of
a paralle]l variable that is of the current shape.
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For example, if you specify p1 as the axis argument for a 1-dimensional shape
8, and [0]p1 contains the value 4, then the send address of position [4] of shape
s is returned in element [0] of a parallel variable of the current shape.

You cannot mix scalar values and parallel values in the argument list. If you want
to use a scalar value (for example, because you only want the send addresses of
positions whose coordinate for axis 1 is 3), either:

= Use a separate assignment statement to assign 3 to a parallel variable; or
=  Use a cast in the argument list to explicitly promote 3 to a parallel value.

When Positions Are Inactive

If a position in the current shape is inactive, that position does not participate in
the operation. In other words, the function does not return the send address speci-
fied by that position’s parallel variable elements.

If elements specify a position in shape s that is inactive, the send address for that
position is returned.

An Example

Figure 90 shows an example of make_send address, using parallel variables
of the 1-dimensional shape t to map paralle]l variables of the 2-dimensional
shape s.
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address = make_gend address(s, axis_0, axis_1); [] active

shape t

2
axis 0 1 0 % 0 0

)

axis 1

. l0 1 /A 3 3
A ) V

address [1] [oljlo] [11/2(01 [3]1] = [[0]13]

14.2

May 1993

Figure 90. An example of the make_send address function.

Note these points in Figure 90: -
* Two elements contain the same send address; this is legal.
® Position [2] is inactive; therefore, element [2] of address does not obtain
the send address specified by the values in [2] axis_0 and [2]axis_1.

The values of the elements that specify coordinates for an axis must be within
the range of these coordinates. If, for example, shape s has 256 positions along
axis 0, an element of axis_0 cannot have a value greater than 255.

Getting Parallel Data: The get Function

Use the get function to get values from a parallel variable when grid communi-
cation is not possible — that is, when communicating between shapes, or when
the communication is not in a regular pattern. The get function is overloaded for
both arithmetic and aggregate types.
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14.2.1 Getting Parallel Variables

The get function has this definition when used with arithmetic types:

type:current get (
CMC_sendaddr_t:current send_address,
type:void *sourcep,
CMC_collision mode_t collision_mode) ;

where:

send_address

sourcep

is a paralle] variable of the current shape. The parallel
variable contains send addresses for positions in a shape
that need not be the current shape; see Section 14.1. They
must, however, be of the same shape as the paralle] vari-
able pointed to by sourcep.

is a scalar pointer to a parallel variable (of any shape)
from which values are to be returned. The paralle] vari-
able pointed to by send_address specifies which values
are to be returned and where they are to be assigned.

collision_mode

specifies the behavior if more than one destination paral-
lel variable element tries to get from the same element of
the source parallel variable. Possible values are
CMC_collisions, CMC_no_collisions,
CMC_few_collisions, and CMC_many collisions.
See “Collisions in Get Operations,” below.

The get function returns a paralle] variable of the current shape. It has the same
arithmetic type as the parallel variable pointed to by sourcep, and it contains
the values of the parallel variable pointed to by sourcep in the positions speci-
fied by send_address.

The get function works like a get'operation using a parallel left index; see Chap-
ter 10. A destination parallel variable obtains values of the source parallel
variable, using the parallel variable send_address as an index. Thus, given this

code:

#include <cscomm.h>

shape [65536]Shapead;
shape [512] [128]ShapeB;
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int:ShapeA axis 0, axis_1, dest;
int:ShapeB source;

These two code fragments have the same results:

with (ShapeA) {
CMC_sendaddr_t:ShapeA address;
address = make_send address(ShapeB, axis 0, axis_1);
dest = get(address, &source, CMC_collisions);

}

and:

with (Shapea)
dest = [axis 0] [axis_1]source;

The get function is more general, however:

® You can use get even if the rank of the shape from which you want to get
values is not known until run time. Paralle] left indexing requires that you
know the rank of the shape when you write the program.

= The get function lets you control how collisions are handled; see below.

= The get function also lets you get parallel arrays. See Section 14.2.2,
below.

If there are inactive positions in ShapeA in the first example above, elements of
dest at these positions do not get values from source. The status of the posi-
tions in ShapeB does not matter; the active elements of dest get the values from
the positions for which address has send addresses, whether or not these posi-
tions are active. Once again, this behavior is the same as that for get operations
with parallel left indexing.

Collisions in Get Operations

The collisions we have talked about previously occur when two elements try to
send to the same element at the same time. Get operations also have collisions,
however; these occur when more than one paralle]l variable element tries to get
a value from the same element at the same time. Unlike send collisions, get colli-
sions are permitted in C*; they are handled automatically by get operations in the
language. The get function and its col1ision_mode argument, however, gives
you some control over how collisions are handled.
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We recommend using the cMC_collisions option of collision _mode for
most applications. This is the method used by get operations in the language it-
self. The other options may be useful in special circumstances:

If there is no possibility of collisions, you can specify cMC_no_colli-
sions; currently, this option uses the same code as cMC_collisions.
However, future implementations of the get function may increase the
performance of CMC_no_collisions.

CMC_many_collisions and CMC_few_collisions can be useful if
your application is memory-intensive and risks running out of storage.
(You can determine this if, for example, your program doesn’t run with a
certain number of physical processors, but does run with a larger number
of processors.) CMC_collisions requires memory for two aspects of its
operation: to store the paths it takes in doing gets for each position, and
to store colliding addresses. If it runs out of memory, it switches over and
tries the algorithm used by cMC_many_collisions, which is slower but
requires less memory. Under these circumstances, the operation would be
faster if you specified cMC_many collisions to begin with, thus avoid-
ing the time spent trying the cMC_col1isions algorithm.

If cMC_collisions takes a long time due to memory limitations and the get has
few collisions, CMC_few_collisions may be faster. In this case, the get opera-
tion iterates separately over each collision, saving the memory required to store the
colliding addresses. '

14.2.2 Getting Parallel Data of Any Length

You can also use the get function to obtain values from parallel locations of any
length — typically, paralle] structures or parallel arrays.

This version of the get function has this definition:

void get (

void:current *destp,
CMC_sendaddr_t:current *send_addressp,
void:void *sourcep,

CMC_collision mode_t collision_mode,
int length);

where:
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is a scalar pointer to a parallel location of the current
shape. This location obtains values from sourcep, based
on the index in the parallel variable pointed to by
send_addressp.

send addressp

sourcep

is a scalar pointer to a parallel variable of the current
shape. The parallel variable contains send addresses for
positions in a shape that need not be the current shape.
See Section 14.1.

is a scalar pointer to a parallel location; it need not be of
the current shape. The parallel variable pointed to by
send_addressp specifies positions of this location.
Data is to be gotten from these positions.

collision mode

length

specifies what to do if more than one destination parallel
variable element tries to get from the same element of the
source parallel variable. Possible values are CMC_colli-
sions, CMC_no_collisions,
cMC_few_collisions, and CMC_many_collisions.
See “Collisions in Get Operations,” above.

specifies the length in bools of the parallel location
pointed to by sourcep.

This version of the get function lets you obtain data that is larger than the stan-
dard data types; typically, this data would be in a parallel structure or parallel

array. For example:

#include <cscomm.h>

shape [65536] ShapeA;
shape [512] [128] ShapeB;

struct S {
int a;
int b;
};

int:ShapeA axis_0, axis_1;
struct S:Shapea dest_struct;
struct S:ShapeB source_struct;

main ()

{

with (Shaped) {
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CMC_sendaddr_t:ShapeA address;

address = make_ send_address(ShapeB, axis_0, axis_1);

get (&dest_struct, &address, &source struct,
CMC_collisions, boolsizeof (source_struct)):

}

dest_struct, of shape Shapea, gets data from individual positions of the
structure source_struct, of shape ShapeB, based on the send addresses
stored in address. Note the use of the intrinsic function boolsizeof to obtain
the length, in bools, of source_struct.

14.3 Sending Parallel Data: The send Function

Use the send function to send paralle] data when grid communication is not pos-
sible — that is, when communicating between shapes, or when the
communication is not in a regular pattern. The send function is overloaded for
both arithmetic and aggregate types. t

14.3.1 Sending Parallel Variables
The send function has this definition when used with arithmetic types:

type:current send (
type:void *destp,
CMC_sendaddr_t:current send address,
type:current source,
CMC_combiner_t combiner,
bool:void *notifyp);

where:
destp is a scalar pointer to a paralle] variable to which values
are to be sent. It can be of any arithmetic type and any
shape.
send_address

is a paralle]l variable of the current shape. The parallel
variable contains send addresses for positions in the shape
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source

combiner

notifyp

of the parallel variable pointed to by destp. This shape
need not be the current shape; see Section 14.1.

is a parallel variable from which values are to be sent. It
must be of the current shape, and it must have the same
type as the parallel variable pointed to by destp.

specifies how send is to handle collisions. Possible val-
ues are CMC_combiner_ max, CMC_combiner_min,
CMC_combiner_add, CMC_combiner_logilor,
CMC_combiner_logxor, CMC_combiner_logand,
and cMC_combiner_overwrite. All of these are
defined in Section 13.1 except CMC_combiner_over-
write. If you specify cMC_combiner_overwrite and
more than one value is sent to a parallel variable element,
one of the values is chosen arbitrarily and stored in the
element, and the rest of the values are discarded.

is a scalar pointer to a bool-size parallel variable of the
same shape as the parallel variable pointed to by destp.
When an element of the destp parallel variable receives
a value, the corresponding element of the parallel variable
pointed to by notifyp is set to 1; other elements are set
to 0. If you do not want to use a notify bit, specify
CMC_no_£f1ield for this argument.

send returns the source.

Using the send function is roughly equivalent to performing a send operation
with parallel left indexing; see Chapter 10. The source parallel variable sends
values to the destp parallel variable, using send_address as an index. The
combiners are equivalent to reduction assignment operators. CMC_com-
biner_overwrite has the same effect as the = operator, when the parallel
right-hand side is cast to the type of the scalar left-hand side.

There are some differences, however, between the send function and send op-
erations with parallel left _indcx:ing:

» The send function can be used when the rank of the shape of the destina-
tion parallel variable is not known until run time.

= The send function lets you include a notify bit, which provides notifica-
tion that a value has been received by an element of the destination parallel

variable.
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® There is not a complete correspondence between the combiners and the
reduction assignment operators. For example, there is no combiner that is
equivalent to the —= reduction assignment operator.

* The send function has an overloaded version that lets you send parallel
arrays; see Section 14.3.2, below.

Inactive Posltions

Inactive positions are treated in the same way they are treated by send operations
with parallel left indexes:

® An element in an inactive position in the current shape does not send a
value.

® Destination parallel variable elements receive values even if they are in
inactive positions.

In addition, the notify bit can be set even in an inactive position.

An Example
This code sends values from elements of source to elements of dest:
#include <cscomm.h>

shape [16384]ShapeA;

shape [2] [16384] ShapeB;
int:ShapeA axis_0, axis_1, source;
int:ShapeB dest;

/* Code to initialize parallel variables omitted. */

main ()
{
with (Shaped) {
CMC_sendaddr_t:ShapeA address;
address = make_send address(ShapeB, axis_0, axis_1);

where (source < 9)
send(&dest, address, source, CMC_combiner_min,
&notify_bit);
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Some sample results are shown in Figure 91. The arrows show what happens to
the value at [3] source, based on the send address in [3] address.

Note these points in the results:

= Position [2] of Shapea is inactive; therefore, [2] source does not send
its value.

® The CMC_combiner_min combiner causes the 3 from [0] source,
rather than the 5 from [1] source, to be sent to [1] [0] dest.

® The notify bit is set in the two positions that receive values.

where (source < 9) ,
actt
send (&dest, address, source, ve
CMC_combiner_min, &notify bit); /] inactive
ShapeA ) ShapeB
0 1 2 3 'y 1 2 3
axis 0 1 | 1 y 27 ol ojofof 1]
notify bit
L7, 1| 1 0 0 0 | =
uig_]_ 0 0 / A 3 ase
address |[1] [0]] [1] [olV//[o] BH—————— =177
/) S [
-f:;""
] / wes
gource| 3 5 / j 7T e

Figure 91. An example of the send function.

14.3.2 Sending Parallel Data of Any Length

You can also use the send function to send parallel data of any length — typical-
ly a parallel structure or parallel array.

This version of the send function is defined as follows:
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void:current * send (
void:void *destp, ,
CMC_sendaddr_t:current *send addressp,
void:current *sourcep,
int length,
bool:void *notifyp):;

where:
destp is a scalar pointer to a parallel location to which data is to
be sent. void:void specifies that destp points to a lo-
cation that can be of any type and of any shape.
send_addressp

is a scalar pointer to a paralle] variable of the current
shape. The parallel variable contains send addresses for
positions in the shape of the parallel variable pointed to
by destp.

sourcep is a scalar pointer to a parallel location from which data
is to be sent. It must be of the current shape.

length specifies the length in bools of the location whose begin-
ning is pointed to by sourcep.

notifyp is a scalar pointer to a bool-sized parallel variable of the
same shape as the location pointed to by destp. When
data is written to a position pointed to by destp, the cor-
responding element of the parallel variable pointed to by
notifyp is set to 1. If you do not want to use a notify bit,
specify cMC_no_£1ield for this argument.

send returns a pointer to the source.

This version of the send function lets you send data that is larger than the stan-
dard data types; typically, this data would be in a parallel structure or parallel
array. The data is sent from the source location to the destination location, using
the parallel variable pointed to by send_addressp as an index to determine the
destination.

Note that this version of send does not include a combiner argument. This ver-

sion uses the CMC_combiner_overwrite option, and arbitrarily chooses a
position of the array or structure if there would otherwise be a collision.

For example:
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#include <cscomm.h>

shape [65536]ShapeA;
shape [512] [128]ShapeB;
struct S {
int a;
int b;
};
int:ShapeA axis_0, axis_1;
struct S source_struct:ShapeA, dest_struct:Shape_B;

main()
{
with (ShapeA) {
CMC_sendaddr_t:ShapeA address;
address = make send_address(ShapeB, axis_0, axis_1);
send (&dest_struct, &address, &source_struct,
boolsizeof (source_struct), &notify bit);
}
}

The values of individual positions of the parallel structure source_struct, of

shape Shapea, are sent to dest_struct, of shape ShapeB, based on the send

addresses stored in address. Note the use of the intrinsic function boolsizeof
) to obtain the length, in bools, of source_struct.

14.3.3 Sorting Elements by Their Ranks

i You can use send, along with the make_send _address and rank functions,
| to reorder elements of a parallel variable by the ranks of their values. Note that
this is also possible with parallel left indexing, as described in Section 13.7.1.

In the example below, we rearrange salary data for employees:

#include <cscomm.h>

shape [5]employees;’
struct employee {
int id;
int salary;
}:
struct employee:employees staff;

main()

{
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/* Code to initialize salaries and ids omitted. */
with (employees) {
int:employees order;
CMC_sendaddr_t:employees address;
/* Determine ranks of salary values. */
order = rank(staff.salary, 0, CMC upward, CMC_none,

CMC_no_field):

/* Create send addresses, using salary ranks as
the index. */

address = make_send address(employees, order);

/* Send employee data for each employee to new
positions, based on the salary ranks. */

send (&staff, &address, &staff, boolsizeof (staff),
CMC_no_field);

}
The code proceeds as follows:

1. It declares the shape, and declares and initializes the parallel structure.
(The initialization of staff.salary and staff.id is omitted.)

2. It calls rank to return the ranks of the elements of staff.salary. The
results are shown in Figure 92.

3. It calls make_send address to return send addresses, using the salary

ranks as the index. Upon return, [0] address contains the send address

of position [1] of shape employees, [1] address contains the send ad-
dress of position [0] of employees, and so on.

4. It then calls send to send the variables in the parallel structure to new
positions, based on the send addresses. The result is that the values are
rearranged as shown in Figure 93.
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order = rank(staff.salary, 0, CMC upward, CMC_none,
CMC_no_field);

" shape employees
0 1 2 3 4

staff.1d | s0 | 51 | 52 | 53 | 54

staff.salary | 530 (230{616 | 614|800

order 1 1] 3 2 4

Figure 92. Using the rank function to rank elements of a parallel variable.

address = make send address (employees, order);
send (&staff, &address, &staff, boolsizeof (staff),
CMC_no_£ield);

shape employees
0 1 2 3 4

staff.id [ 51 | 50 | 53 | 52 54

staff.salary | 220 | 530|614 | 616 | 800

order 1 0 3 2 4

Figure 93. Using make_send address and send to reorder
the elements of parallel variables by rank.
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14.4 Communicating between Scalar and

14.4.1

Parallel Variables

This section discusses C* communication functions that provide general com-
munication between the scalar and paralle] variables.

From a Parallel Variable to a Scalar Variable

The read_from_position Function

Use the read_from position function to read a value from a parallel variable
element (not necessarily of the current shape) and assign it to a scalar variable.
This function is overloaded for any arithmetic type.

The read_from position function has this definition:

type read_from position (
CMC_sendaddr_t send_address,
type:void *sourcep);

where:

send_address
is the send address of a position from which a value is to
be read.

sourcep is a scalar pointer to the parallel variable from which a
value is to be read; the paralle]l variable can be of any
shape and any arithmetic type.

Before calling read_from_position (or as part of the read_from_posi-
tion call), you must use the single-address version of make_send address to
obtain a send address; see Section 14.1. The read_from position function
uses this send address to specify the position, and it uses sourcep to specify the
parallel variable. It returns the value obtained from the parallel variable element
at that position. The value is returned even if the position is inactive.

Since read_from position deals with a scalar value, it does not have to be

called within the scope of a with statement, and the source paralle] variable does -

not have to be of the current shape.
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This function, in combination with make_send address, produces the same
result as assigning a scalar-indexed parallel variable to a scalar variable. For ex-
ample:

scalar = [7]lpl;

You can use read_from position even when the rank of the shape is not
known until run time, however.

The example below reads the value from element [16][4] of parallel variable pa,
which is of shape image. It assigns the value to the scalar variable s1.

#include <cscomm.h>

shape [256] [256] image;
float:image pi1;
CMC_sendaddr_t address;
float s1;

main()

{
address = make_send_address(image, 16, 4);
sl = read from position(address, &pil);

}

Note that the call to make_send address can also be made from within
read_from position’s argument list:

sl = read from position(make send address(image, 16, 4),
&pl) ;

The read_from_pvar Function

Use the read_from_pvar function to read the values of active elements of a
parallel variable and assign them to a scalar array. This function is overloaded
for any arithmetic type. It has this definition:

void read from pvar (

type *destp,
type:current source)

where:

destp is a pointer to the buffer to which values are to be written.
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source is a parallel variable of the current shape from which val-
ues are to be read. Both source and the array pointed to
by destp must have the same arithmetic type.

The values in source are written into the specified scalar array. Values in inac-
tive elements are not copied; array elements that correspond to inactive positions
receive undefined values. Typically, the scalar array will have the same number
of elements and dimensions as the source parallel variable. It cannot have fewer
elements than the source paralle] variable. .

This example copies the values in p1 to the scalar array scalar_array:
#include <cscomm.h>

shape [16384]ShapeA;
int:ShapeA pil;
int scalar_array[16384];

main()
{
/* Initialization of pl omitted */

with (ShapeA)
read_from pvar (scalar_array, pl);

}

Note, however, that if the scalar array has more than one dimension, you must
cast it to be a pointer to the type of the array, so that the function knows where
to put the data. For example:

#include <cscomm.h>

shape [128] [256] ShapeB;
float:ShapeB ql;
float scalar_array2[128] [256];

main()
{

/* Initialization of gl omitted */

with (ShapeB)
read_from pvar((float *)scalar_array2, qi);
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Also, when there is more than one dimension involved, the data is transferred so
that the highest-numbered parallel dimension is contiguous in scalar memory. In
other words, the left indexes of the paralle]l variable match up with the right
indexes of the scalar array.

Note for users of CM-5 C*: The CM-5 implementation also has a version of this
function for parallel data of any length. It has this definition:

void read from pvar (
void *destp,
void:current *sourcep,
int length);

where destp is a pointer to the scalar array to which the values are to be written,
sourcep is a pointer to the parallel data, and 1ength is the length, in units of
bools, of each data element pointed to by sourcep.

Note that using this version of read_from pvar with aggregate data may
improve performance, but it will also make your program nonportable (because
of its reliance on size, alignment, and structure field padding).

From a Scalar Variable to a Parallel Variable

The write_to_position Function

Use the write_to_position function to write a value from a scalar variable
to a parallel variable element (not necessarily of the current shape). The
write_to_position function has this definition:

type write_to_position (
CMC_sendaddr_t send_address,
type:void *destp,
type source);

where:
send address
is the send address of the position to which a value is to
be written.
destp is a scalar pointer to the parallel variable to which a value
is to be written; the parallel variable can be of any shape
and any arithmetic type.
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source is the scalar variable whose value is to be sent to the desti-
nation parallel variable element. Both source and the
parallel variable pointed to by destp must have the same
arithmetic type.

The function returns the value of source.

As with read_from position, you must use the single-address version of
make_send_address to obtain a send address; see Section 14.1.
write_to_position uses this send address to specify the position, and it uses
destp to specify the parallel variable. It sends the value in source to the ele-
ment specified by these arguments. The value is written into this element even
if the element’s position is inactive.

write_to_position does not have to be called within the scope of a with
statement, and the destination parallel variable does not have to be of the current
shape.

This function, when used along with make_send_address, produces the same
result as assigning a scalar variable to a scalar-indexed parallel variable. For

example:
[71p1 = scalar;

You can use write_to_position even when the rank of the shape is not
known until run time, however.

The example below reverses the example for read_from_position in the pre-
vious section. It assigns the value of the scalar variable s1 to element [16][4] of
parallel variable p1, which is of shape image.

#include <cscomm.h>

shape [256] [256] image;
float:image p1;
CMC_sendaddr_t address;
float si;

main ()

{
address = make_send address(image, 16, 4);
write_to_position(address, &pl, s1);
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The write_to_pvar Function

Use the wzite_to_pvar function to write data from a scalar array to a parallel
variable of the current shape. The function is overloaded for any arithmetic type.
It has this definition:

type:current write_ to_pvar (
type *sourcep)

where sourcep is a pointer to a scalar array from which data is to be written.

The function returns a parallel variable of the current shape containing the values
in the scalar array. If there are inactive positions in the shape at the time the func-
tion is called, the values in these inactive positions are not overwritten. The
scalar array typically has the same number of elements and dimensions as the
current shape; it cannot have fewer elements.

The example below reverses the example for read_from pvar shown in the
previous section. The array scalar_axray writes its values to the parallel vari-
able p1:

#include <cscomm.h>

shape [16384]Shapel;
int:ShapeA pl;
int scalar_array[16384];

main()

{

/* Initialization of scalar_array omitted */

with (Shapea)
pl = write_ to_pvar (scalar_array);

}

Note once again, however, that if the scalar array has more than one dimension,
you must cast it to be a pointer to the type of the array, so that the function knows
where to put the data. For example:

#include <cscomm.h>

shape [128] [256]ShapeB;
float:ShapeB Qil;

float scalar_array2[128] [256];

main()
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/* Initialization of scalar_array2 omitted */

with (ShapeB)

ql = write_to_pvar((float *) scalar_array2);
}

Also, when there is more than one dimension involved, the data is transferred so
that values that are contiguous in scalar memory become the highest-numbered
dimension of the parallel variable. In other words, the right indexes of the scalar
array match up with the left indexes of the parallel variable.

Note for users of CM-5 C*: The CM-5 implementation also has a version of this
function for paralle] data of any length. It has this definition:

void write_to_pvar (
void:current *destp,
void *sourcep,
int length);

where destp is a pointer to the parallel data in which the values are to be written,
sourcep is a pointer to the scalar array, and length is the length, in units of
bools, of the data pointed to by destp.

Note that using this version of write_to_pvar with aggregate data may
improve performance, but it will make your program nonportable (because of its
reliance on size, alignment, and structure field padding).

The make_multi_coord and
copy_multispread Functions

As we mentioned in Section 13.8, the copy_mul tispread function is compara-
ble to the copy_spread function, except that you use it on hyperplanes instead
of scan classes.

copy_multispread takes as one of its arguments a multicoordinate. The multi-
coordinate specifies which position of the parallel variable is to be spread
through each hyperplane. For example, in the discussion of multispread in
Section 13.8, we saw that, if we allowed positions to differ along axes 0 and 1
while keeping axis 2 fixed, we created these two hyperplanes (for a 2-by-2-by-2
shape):
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[o] [o] [o]
11 [o] [o]
{o] [1] o]
(1] [1] [0]

and:

[0] [0] [1]
(1] [0l [1]
[0l [1] [1]
[1] (2] [1]

Choosing an individual element in these hyperplanes requires that you specify
only two of the three coordinates, since the third (the coordinate for axis 2) is
fixed (it is [0] in the first hyperplane, [1] in the second). The multicoordinate
specifies what the coordinates are along the axes that are not fixed. If the multi-
coordinate specifies [0] for axis 0 and [0] for axis 1, for example, then position
[01[0][0] is chosen for the first hyperplane, and [0][0][1] is chosen for the second
hyperplane.

To obtain this multicoordinate for a position,' use the make_multi_coord func-
tion. You can then use the multicoordinate in the call to copy_multispread.
The multicoordinate specifies the desired position in each hyperplane.

make_multi_coozrd is an overloaded function. It provides three different ways
of specifying a position:

= By including the position’s coordinates as arguments to the function.

= By specifying an array that contains these coordinates. Use this version if
the shape’s rank will not be known until run time.

= By specifying the position’s send address.

The three versions of make_multi_coord have these definitions:

CMC_multicoord t make_multi coord (
shape s,
unsigned int axis mask,
int axis 0 _coord, ... );

CMC_multicoord_t make_multi_coord (
shape s,
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unsigned int axis_mask,
int axes(]);

CMC_multicoord t make multi_coord (

shape s,

unsigned int axis_mask,
CMC_sendaddr_t send address);

where:

axis mask

specifies the shape for which the multicoordinate is to be
obtained.

is a bit mask that specifies the axis or axes along which
positions in a hyperplane are allowed to differ. Bit 1 cor-
responds to axis 0, bit 2 to axis 1, and so on. For example,
use a bit mask of 3 to specify axes 0 and 1; use 6 to speci-
fy axes 1 and 2; use 5 to specify axes 0 and 2.

axis_0_coord

axes[]

(in the first version) specifies the coordinates of a position
in shape s along axis 0. Specify as many coordinates as
there are axes in the shape.

(in the second version) is an array that contains the posi-
tion’s coordinates. Specify as many coordinates as there
are axes in the shape.

send_address

(in the third version) is the send address for a position in
shape s. Any position will do.

In all versions, the function returns the multicoordinate for the specified position
with the specified axis mask.

The definition of copy_multispread is:

type:current copy _multispread (
type:current *sourcep,
unsigned int axis_mask,
CMC_multicoord t multi_coord) ;

where:
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sourcep is a scalar pointer to a parallel variable from which values
are to be copied. The parallel variable can be of any arith-
metic type; it must be of the current shape.

axis mask is a bit mask that specifies the axis or axes along which
positions in a hyperplane are allowed to differ.

multi coord
specifies the coordinates that determine the elements of
the source parallel variable from which values are to be
copied.

The function copies the value from each specified element to each active position
in that element’s hyperplane. It returns a parallel variable containing these val-
ues; the parallel variable is of the current shape and has the same arithmetic type
as source. Values of inactive elements are copied.

14.5.1 An Example

For example, given these declarations:

#include <cscomm.h>

CMC_sendaddr_t address;
CMC_multicoord t multi_coord;
shape ([128] [128] [128]ShapeA;
int:ShapeA source, dest;

then:
address = make_send address(ShapeA, 0, 0, 1);

obtains the send address for position [0]{0][1] in shape ShapeA and assigns it to
the scalar int address.

multi_coord = make multi_coord(ShapeA, 3, address);

obtains the multicoordinate for this pos1t10n along axes 0 and 1 (specified by the
value 3 for the axis_mask argument) and assigns it to the multi_cooxd.

with (Shapea)
dest = copy_multispread(&source, 3, multi coozrd);
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takes each element of parallel variable source specified by the axis mask (3)
and the multicoordinate (multi_cooxd) and copies its value into the elements
of parallel variable dest in the same hyperplane. In other words (for a

2-by-2-by-2 shape):

® The value in [0] [0] [0] souxce is assigned to [0] [0] [0])dest,
[1] [0] [0] dest, [0] [1] [0]dest, and [1] [1] [0] dest.

= The value in [0] [0] [1] souxce is assigned to [0] [0] [1] dest,
[1] [0] [1]dest, [0[1] [1]dest,and [1] [1] [1]dest.
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Appendix A
CM-200 C* Performance Hints

This appendix describes ways to improve the performance of CM-200 C* pro-
grams. In some cases, it repeats information included in the body of this guide;
in other cases (for example, the discussion of allocate_detailed_shape),
it presents information not discussed elsewhere in the guide.

A.1 Declarations

A.1.1 Use Scalar Data Types

If data is scalar, declare it as a regular C variable, so that it is stored on the front
end. In other words, do not store scalars in parallel variables.

A.1.2 Use the Smallest Data Type Possible

To save storage on the CM, use the smallest data types possible for parallel vari-
ables. For example, if the parallel variable is a flag, declare it as a bool. If it is
to have values only from -4 to 17, declare it as a signed chax.

A.1.3 Declare float constants as floats

Declaring £loat constants as floats (that is, with the final /) reduces the
number of conversions that the compiler must make, thereby speeding up the
program. For example,
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float:ShapeA pl, p2;
pl = p2 * 4.0f;

is better than writing the code with just “4.0".

Functions

Prototype Functions

Using ANSI function prototyping speeds up a program by reducing the number
of conversions. For example, a call to an unprototyped function with a chaxr will
promote the argument to an int. The called function must then convert the int
back to a char.

Use current instead of a Shape Name

If a program is to be run with safety on, it is more efficient to define a function
to take a parallel variable of the current shape as an argument, rather than a paral-
Jel variable of a specified shape. In the latter case, the compiler must take the
additional step of determining that the specified shape is current.

Use everywhere when All Positions Are Active

If a function contains statements that are to operate on all positions, regardless
of the context in which they are called, you may be able to increase performance
by enclosing the function’s statements in an everywhere statement. The explic-
it use of everywhere lets the compiler use faster instructions that ignore the
context.

NOTE: This technique can also work with a program’s main function.
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Pass Parallel Variables by Reference

In function calls, pass a parallel variable by reference (that is, take its address and
pass the pointer) if passing the parallel variable by value is not required.

Operators

Avoid Parallel &&, ||, and ?: Operators Where
Contextualization Is Not Necessary

As discussed in Chapter 5, the parallel versions of the &&, | |, and ? : operators
perform implicit contextualization. If you do not require this aspect of the opera-
tors’ behavior, your code will run faster if you can avoid using them.

For example, if p1 and £ (p1) are known to be 0- or 1-valued, then
p2 = pl & £(pl);

is much more efficient than
p2 = pl && £(pl);

The former statement avoids contextualization, and it avoids doing a logical con-
version of its operands, because it assumes that the two operands have logical
values.

Similarly,
where ( (pl < p2) & (p2 < p3) )

is more efficient than a version that uses the logical AND operator. The “less-
than” relational expressions have logical values; therefore, the use of the logical
AND (and the resulting contextualization) is not required.

Avoid Promotion to ints by Assigning
to a Smaller Data Type

As discussed in Chapter 5, the compiler evaluates an expression at the precision
of the variable to which the expression is assigned, provided that the results are
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the same as if standard ANSI promotion rules were followed. Otherwise, smaller
data types such as bools and chars are promoted to ints when used in expres-
sions. Therefore, explicitly assigning the result of an expression involving these
data types to a variable of the same data type will increase performance.

Communication

To get the best performance in programs in which parallel variables send values
to and receive values from other parallel variables, do the following:

1. If possible, put parallel variables that are to communicate in the same
shape.

2. Use grid communication functions instead of general communication
functions or the language features (like parallel left indexing) that are the
equivalent of general communication functions.

3. Use send operations instead of get operations for general
communication.

4. If the program has known, stable patterns of communication that use one
axis more than another, use allocate_detailed shape to weight
the axes. '

Some of these points are covered in more detail below.

Use Grid Communication Functions instead of
General Communication Functions

As mentioned in Part III of this guide, grid communication is faster than general
communication. Therefore, your program will run faster if parallel variables that
are to communicate are in the same shape, and you use the grid communication
functions for send and get operations.
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Use Send Operations instead of Get Operations

For general communication, send operations are up to twice as fast as get opera-
tions, and use less storage. If possible, use communication functions and C* code
that perform send operations rather than get operations.

In grid communication, send operations and get operations have the same cost.

The allocate_detailed_shape Function

Typically, programs use the C* intrinsic function allocate_shape to dynami-
cally allocate shapes. If, however, your program has known, stable patterns of
communication, you may be able to improve the performance of your program
by using the intrinsic function allocate_detailed_shape instead; this func-
tion lets you weight the axes of the shape according to the relative frequency of
communication along the axes. C* can then lay out the shape on the CM to opti-
mize performance based on these weights.

Like allocate_shape, allocate_detailed_shape is overloaded. In one
version, you use a variable arguments list to specify each dimension of the shape.
In the other, the information about the dimensions is included in an array that is
passed as an argument to the function; this format is useful if the program will
not know the rank until run time.

Include the header file <em/cmtypes.h> when you call allocate_de-
tailed_shape.

The variable-arguments format of the function is as follows:

CMC_shape_t allocate_detailed_shape (
shape *shapep,
int rank,
unsigned long length,
unsigned long weight,
CM_axis_order_t ordering,
unsigned long on_chip_bits,
unsigned long off_chip_bits, ...

where:

shapep is a pointer to a shape. The remaining arguments specify
this shape, and the function returns this shape.
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specifies the number of dimensions in the shape.
is the number of positions along axis 0.

is a number that indicates the relative frequency of com-
munication along the axis. For example, weights of 1 for
axis 0 and 2 for axis 1 specify that communication occurs
about half as often along axis 0. Only the relative values
of the weight arguments for the different axes matter; for
example, weights of 5 for axis 0 and 10 for axis 1 specify
the same communication as weights of 1 and 2, or 3 and
6. Specifying the same values for different axes indicates
that they have the same level of communication.

specifies how coordinates are mapped onto physical CM
processors for the axis. There are three possible values:
CM_news_oxder, CM_send order,and CM_fb_oxder.

The value CM_news_order specifies the usual mapping,
in which positions with adjacent coordinates are in fact
represented in neighboring processors on the CM.
Specifying any other order slows down grid
communication considerably.

The value cM_send_order specifies that a position with
a lower coordinate than another position also has a
smaller send address. This ordering is rare, but it is used
in certain applications.

Use the value cM_£b_order only if your shape is an
image buffer and is to be moved to a framebuffer. For
details, see Chapter 1 of the Generic Display Interface
Reference Manual for C*.

You can specify a different ordering for each axis.

on_chip bits

off_chip bits

can be used to specify the mapping of positions to physi-
cal processors only if the values of the weight argument
for all axes are the same. Specify O for the value of each
of these arguments if you use different values for the
weight argument. For information on how to specify
other values for on_chip bits and off_chip bits,
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consult the description of the create-detailed-geo-
metry instruction in the Paris Reference Manual.

Include values for length, weight, ordering, on_chip_bits, and
off_chip_bits for as many axes as are specified by rank.

The array format of allocated_detailed_shape is as follows:

CMC_sShape_t allocate_detailed shape (
shape *shape ptr
int rank,
CM axis descriptor_t axes[]

)

where axes is an array that contains descriptors for each axis in the shape to be
allocated. You can fill in the information about each axis by calling the C* library
function £111_axis descriptor, which is defined as follows:

void fill axis_descriptor (

. CM_axis_descriptor_t axis,
unsigned long length,
unsigned long weight,
CM_axis_order_t ordering,
unsigned long on_chip bits,
unsigned long off chip bits

)

where axis is an array element that corresponds to the axis being described, and
the remaining arguments are defined as above.

As an intrinsic function, allocate_detailed_shape can be used as an in-
itializer at file scope. Thus, you can do this:

#include <cm/cmtypes.h>

shape s = allocate_detailed_shape(&s, 2, 256, 2,
CM_news_order, 0, 0, 512, 1,
CM_news_order, 0, 0);

This statement fully specifies a 256-by-512 shape s, for which you expect com-
munication to occur twice as often along axis 0 as along axis 1.
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Parallel Right Indexing

Parallel right indexing, as described in Chapter 7, becomes less efficient as the
range of the array indexes increases.

For users familiar with Paris: The performance of parallel right indexing is com-
parable to aref and aset calls, rather than are£32 and aset32 calls.

Paris -~

Although generally not necessary, it may be possible to improve performance by
calling Paris, the CM paralle! instruction set, from within a C* program. For de-
tails on how to do this, see Chapter 2 of the CM-200 C* User s Guide.
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Using allocate_detailed_shape

for the CM-5

The CM-5’s run-time system distributes the data for parallel variables among the
processors (either nodes or vector units) of the partition on which the program
is running. Parallel variables that have the same shape have their data distributed
so that their elements are organized identically among and within the processors;
this ensures that elemental operations don’t require communication. The “lay-
out” defines this organization; it is a property of the shape. Two shapes can have
the same rank and dimensions but different layouts (this is why exchanging data
between parallel variables of different shapes may require communication).

C* hides from the user the details of how shapes are actually laid out on a CM-5.!
You may be able to improve your program’s performance, however, by using the
allocate_detailed shape function to change a shape’s physical layout
from the default layout provided by the run-time system. You may also want to
use allocate_detalled_shape if you are calling CM Fortran routines, and
you need to have a shape’s layout conform with a CM Fortran array layout.

Sophisticated use of allocate detalled_shape requires an understanding
of how the CM-5 run-time system maps shapes onto the nodes or vector units, and
the implications of changing the default mapping. Sections B.1 through B.4 pro-
vide the necessary background information. If you already understand the issues
involved, you can go directly to Section B.S, where we describe functions that
you can call to determine a shape’s layout, or to Section B.6, where we explain
how to call allocate _detailed shape.

1. Although we talk about “laying out a shape” in this appendix, note that what the run-time system really
does is allocate memory for parallel variables of a given shape on the nodes or vector units.

May 1993

247

Copyright ©® 1990-1993 Thinking Machines Corporation



C* Programming Guide

B.1

B.1.1

B.1.2

The Default Layout

This section describes how the current implementation of the run-time system
lays out shapes on a CM-5 with vector units. Section B.2 discusses how shapes
are laid out on a CM-5 without vector units. These procedures may change in
future implementations.

Let’s say you have a 2-dimensional shape with 8 positions along axis 0 and 12
positions along axis 1, and you are going to run your program on a 16-vector-unit
(four-node) partition of a CM-5. How will the run-time system determine how
to lay out the positions of the shape on the four nodes? Understanding how it
does this requires understanding five concepts:

= physical grids

= garbage positions

" subgrids

® axis sequence

* subgrid sequence

Physical Grids

When laying out a shape, the run-time system arranges the physical vector units
into a grid whose rank is the same as the rank of the shape. The total number of
vector units in a partition is always a power of two; therefore, the number of
vector units along each axis of the physical grid must be a power of two. Thus,
for our example, the run-time system has these choices for arranging the 16 vec-
tor units into a 2-dimensional physical grid: grids of [4][4], [81[2), [2][8],
[16][1], and [1][16].

Garbage Positions
The run-time system tries to divide up the shape’s positions equally among the
vector units. In doing so, it follows these rules:

= Each vector unit must receive the same number of positions.

= The number of positions per vector unit must be a multiple of 8.
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These rules also apply when you use allocate_detailed_shape to lay out
the shape yourself.

Note, however, that it isn’t possible to follow these rules in laying out an [8][12]
shape on 16 vector units; each vector unit could receive the same number of posi-
tions, but the number of positions would not be a multiple of 8.

In such a case, the run-time system internally uses a layout with larger dimen-
sions along one or more axes, so that the rules can be followed. It then lays out
this new shape on the vector units. The actual shape can then be stored within
this larger layout, leaving unused positions along the extended axes. These
unused positions are referred to as garbage positions.

The run-time system always adds garbage positions to the high end of an axis,
and adds as few garbage positions as possible. For our shape of [8][12] positions,
the run-time system would pad axis 1 to make an underlying shape of [8][16].
Its layout on a physical grid of [2][8] is shown in Figure 94.

B garbage
position

_ EEEEEEN
EEEEET

Figure 94. An [8][12] shape laid out on a [2][8] physical grid.

Typically you don’t need to be aware that the garbage positions exist. You do
need to take these positions into account, however, when determining how you
want to lay out your shape using allocate_detailed shape.

Subgrids

As we mentioned above, the run-time system divides the shape into a number of
sections, each section corresponding to a vector unit. These sections are called
subgrids.
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Note the layout requirements we have discussed so far:

® The physical grid must have a power-of-2 number of vector units along
each dimension. -

® Each vector unit must contain a multiple of 8 positions.

= Each vector must contain the same number of positions — in other words,
the shape’s subgrid must be the same size on each vector unit.

In the case of our sample [8][12]shape, padded to [8][16], we will have 8 posi-
tions per vector unit, but will they be laid out as a [4][2] subgrid, as shown in
Figure 94, or, for example, as a [1][8] subgrid? The [1]{8] layout implies a physi-
cal grid of [8][2], as shown in Figure 95.

axis 1 B garbage
position

TTITT11] | OOeesss
OII1T117 | OO s
O | (I 1 e
O | O .
O | O s
OOIT11T1717 | O s
OO | OO s
OO | OO s

axis 0

Figure 95. An [8][12] shape laid out on an [8][2] physical grid.

The basic process that the run-time system follows is to minimize the size of the
subgrid. In other words, it uses as few garbage positions as possible; see Section
B.1.2. This doesn’t help us choose between the [2][4] and [1][8] subgrids, which
both have the same number of garbage positions. It does, however, eliminate sub-
grids that use fewer than all 16 vector units. In practice, the run-time system
chooses a layout that uses fewer than all of the vector units only when the number
of positions in the shape is small relative to the number of vector units on which
the program is to run.

To determine which layout the run-time system actually uses, you include in your
program the appropriate functions discussed in Section B.S5.
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If you prefer a different subgrid size from the one that the run-time system uses,
you can use allocate_detalled shape to specify different lengths for the
subgrid axes, as long as the resulting subgrid meets the requirements listed at the
beginning of this section.

Note that, given the dimensions of a shape, the physical grid determines the sub-
grid, and vice versa — if you choose to minimize the number of garbage
positions. You can specify either the physical grid or the subgrid when you use
allocate_detailed shape.

Axis Sequence

One piece of information left out of the layouts shown in Figure 94 and
Figure 95 is the numbering of the vector units within the physical grid. In the
[2]I8] physical grid layout, for example, Figure 96 shows two ways in which the
vector units could be numbered.

axis 1
0 2 4 6 8 10 12 14
0 1 3 5 7 9 11 13 15

or

0 8 9 10 1 12 13 14 15

Figure 96. Two possible vector-unit numberings.

Vector units 0-3 are on node 0, vector units 4-7 are on node 1, etc.

In the example on the top in Figure 96, the vector-unit numbers increase fastest
(that is, by the smallest interval) along axis 0; we call this an axis sequence of
(0, 1) — the first axis in the sequence is the one that varies fastest. In the example
on the bottom in Figure 96, they increase fastest along axis 1; this corresponds
to an axis sequence of (1, 0).
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By default for C*, the current implementation of the run-time system lays out
multidimensional shapes so that the vector-unit numbers vary fastest along the
highest-numbered axis — that is, it would choose the axis sequence of (1, 0) in
our example. You can choose a different axis sequence via allo-
cated_detailed shape.

The axis sequence used is the only feature of the vector-unit numbering that you
can currently control.

Subgrid Sequence

The final issue with regard to the default layout for our sample shape is how the
positions in the subgrid are arranged into linear order in the memory of a vector
unit. This is known as the subgrid sequence.

If you have a subgrid whose dimensions are [4][2], there are two possible layouts
of the positions in vector-unit memory:

[o] [o] [o] [o]

foj [1] [1] [o]
1] {o0] 2] [o]
1] [1] or 3] [o]
[2] [0] {o] [1]
[2] [1] [1] [1]
[3] [0] [2] [1]
(3] [1] [3] [1]

By default for C*, the current implementation of the run-time system chooses the
layout on the left; the highest-numbered axis varies fastest (that is, the adjacent
subgrid positions along the highest-numbered axis are contiguous in memory).

You can use allocate_detﬁiled_shape to choose the other subgrid
sequence, in which positions along the lowest-numbered axis are contiguous in
memory.

Putting It All Together

It turns out that the run-time system chooses a [2][8] physical grid for our [8][12]
shape. Given the information covered so far, we can now show exactly how the
run-time system would lay out the shape using this physical grid. Seé Figure 97.
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Figure 97. Default layout of an [8][12] shape on 16 vector units.

Note that the padding occurs in vector units 6, 7, 14, and 15; other layouts would

put the padding in other vector units.

Note these general performance rules for vector units:

= Data movement within a vector unit is faster than data movement between
vector units. Thus, in the default, data movement would be faster along

axis 1.

= Data movement within the vector units of a node is faster than data move-

ment across nodes.

B.2 Layout without Vector Units

If your program is not going to use the CM-5’s vector units, the layout is done
in terms of nodes instead of vector units. The layout rules are basically the same,
except that the rule that the subgrid must be a multiple of 8 positions does not

apply.

If the run-time system were to lay out our sample [8][12] shape on 4 nodes, it
could therefore choose among the physical grids and subgrids shown in

Figure 98.
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subgrid [4][6] subgrid [2][12] subgrid [8][3]
physical grid [2][2]  physical grid [4][1] physical grid [1]{4]

Figure 98. Subgrids and physical grids for an [8][12] shape on four nodes.

Note that no padding is required, because the 96 positions of the shape divide up
evenly into 24 per subgrid.

The run-time system in this case would choose the [4][6] subgrid. The actual
default layout is shown in Figure 99.

Controlling Subgrid Layout: Using Serial Axes
and Weighting Axes

As we mentioned earlier, allocate_detailed_shape lets you control the
parameters that the run-time system uses in laying out a shape (subgrid lengths,
axis sequence, etc.). The allocate_detailed_shape function provides two
additional mechanisms for controlling subgrid layout:

= serial axes
® weighting of axes

We discuss serial axes below, and weighting of axes in Section B.3.2.
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Figure 99. Default layout of an [8][12] shape on four nodes.

B.3.1 Serial Axes

The allocate_detailed_shape function allows you to specify an axis as
serial. Typically you would do this to create parallel variables that conform to
CM Fortran arrays that contain a serial axis.

Specifying an axis as serial has two effects:

= All positions along the axis will be located on the same vector unit. (This
layout is useful if communication tends to occur along just one axis, since
communication is faster within a vector unit than between vector units.)
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For example, if your shape is [3][8][12] and you specify that axis 0 is to
be serial, all positions along axis 0 would be located on the same vector
unit; the physical grid of the remaining two axes is the same as it would
be if axis 0 didn’t exist — see Figure 97. One result of this is that the run-
time system never adds garbage positions to a serial axis; it always
satisfies the requirements for garbage positions in the non-serial axes.

The positions along a serial axis in the current implementation vary more
slowly than positions along any non-serial axis — that is, they must be
furthest away from each other in memory. For example, if you bave a sub-
grid that is [2][3][4], by default the order of positions in memory is:

[0] [0] [0]
[0] [0] [1]
[0] [0] [2]
[0] [0] (3]
(0] [1] [0]
[0l [1] [1]
(0] [1] (2]
[0l [1] [3]
[0] [2] [0]
[0] [2] [1] etc.

If you were to specify that axis 1 is serial, the sequence would change to:

[o0] fo] [o]
[o] [0] [1]
(0] [0] [2]
[o] [0] (3]
[1] [0] [o0]
(1] [0] [1]
[1] [0] [2]
[1] [0] [3]
[o] [1] [0]
[0] [1]) [1] etc.

Axis 1 now varies most slowly. If you have more than one serial axis, by
default the highest-numbered axis varies fastest, just as it does for
non-serial axes. In effect, serial and non-serial axes are ordered indepen-
dently.
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Weighting Axes

The allocate_detailed_shape function also lets you control layout by dif-
ferentially weighting the shape axes.

Weighting one axis more heavily than another axis tells the run-time system that
more communication is to take place along the more heavily weighted axis. The
run-time system therefore tries to localize more of the positions along that axis
within a node or vector unit, thereby reducing the cost of the communication
along that axis. In our example of laying out a shape that is [8][12] on 16 vector
units, weighting axis 1 would tend to result in a [1][8] subgrid. If you have more
than two dimensions, you can assign different weights to each dimension, or
assign the same weight to two or more of the dimensions, causing the run-time
system to treat them similarly. '

Note that the run-time system will not necessarily be able to lay out the shape
to completely reflect the weights you assign to the axes. In the current imple-
mentation, once it has chosen a subgrid with the fewest positions, it uses the
weights to trade off factors of two in the lengths of subgrid axes against factors
of two in the length of physical-grid axes, attempting to give axes with higher
weights a longer subgrid length and a smaller physical-grid length.

By default, the run-time system weights all axes evenly.

Performance Issues

The main reason to use allocate_detailed shape is to improve perfor-
mance over what you can obtain using the default layout chosen for a shape by
the run-time system. This section summarizes the performance issues you should
consider (most of these issues have already been mentioned in previous
sections).

Note that the discussion here refers to vector units, but applies also to programs
running on CM-5s without vector units.
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B.4.1 Effect of Subgrid Length and Physical Grid

As we discussed above, the run-time system by default chooses the smallest sub-
grid size. This is the most efficient size for operations that are internal to a vector
unit — that is, operations that don’t involve communication between vector
units.

When you lengthen a subgrid axis, you improve the efficiency of communication
along that axis at the expense of communication along other axes; you also
decrease the overall efficiency of operations within the vector unit.

Let’s look at the communication issue in more detail. Assume that we’re using
a subgrid size of [8][4] and we want to do a grid-communication operation of
distance 1 along axis 1 — that is, each element of a paralle]l variable sends a
value to an element that is one coordinate higher along axis 1. For example:

to_torus_dim(&dest, source, 1, 1);

Figure 100 shows the subgrids on two vector units; each vector unit moves 8
values to the next vector unit, and 24 values within the vector unit.

axis 1
7N N VAR L7,
— Fg\r\(\ b ‘1(\@(\% —N— Q) within a )
~ 1 N vector unit
A AW A W i ¢ AP
A4
AT \f—‘ A —
. A Tk 7 \_ between
axis 0 L =~ \ N vector units
(AR St A
F N
fan 3
A y—\‘
ST TN
N Al
vuU vuU vu vu

Figure 100. On-VU and off-VU data movement
for a NEWS operation along axis 1.

In general, the number of off-VU moves in an operation like this is equal to the
total number of positions in the subgrid divided by the subgrid length of the axis
along which the communication is taking place (32/4 = 8); this value is referred
to as the subgrid-orthogonal-length.
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The number of moves within the vector unit is the total number of positions in
the subgrid minus the subgrid-orthogonal-length (32-8 = 24). This number is
roughly proportional to the subgrid size. As long as the subgrid size stays
roughly constant, changing the layout does not greatly affect the cost of these
on-VU moves. Decreasing the subgrid-orthogonal-length of a subgrid axis will,
however, result in better communication performance along the axis.

Effect of Serial Axes

Making an axis serial guarantees that all positions along the axis are on the same
vector unit— that is, no off-VU data movement is required. This means. that a
serial axis will have optimal within-VU performance, once again at the expense
of communication along other axes.

But beware that, since all of the other constraints on shape layout must be satis-
fied by the non-serial axes, a shape with only a small number of positions along
the non-serial axes can end up with an inefficient layout, because it will require
a large number of garbage positions.

Effect of Garbage Positions

If a shape has garbage positions, they are not actually part of the shape’s data,
but must be taken into account by grid communication functions. Often this
requires extra work to move data “over” the garbage locations, thus decreasing
efficiency. You should therefore avoid choosing a shape or a subgrid size that
requires the creation of garbage positions along an axis that will be used heavily
for communication.

For other communication operations, sometimes the existence of any garbage
positions in the shape will add overhead.

For elemental operations, the only overhead that garbage positions add is that
computations are carried out for those positions, even though the results are not
used.
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B.5 Determining a Shape’s Layout

C* provides several functions you can call to find out how the run-time system
actually laid out a shape. You can use these functions to determine if you should
use allocate_detailed shape to specify a different layout.

Include the header file <csshape .h> when you call any of these functions.
The functions are defined as follows:

CMC_axis_order_t CMC_shape_axis_ordering(shape s, int axis);
int CMC_shape_physical_axis_mask (shape s, int axis);
int CMC_shape_subgrid axis_length(shape s, int axis);
int CMC_shape_subgrid_axis sequence(shape s, int axis);
int CMC_shape_subgrid_size (shape s);
int CMC_shape_subgrid axis_increment (shape s, int axis);
int CMC_shape_subgrid axis_orthogonal_length(shape s,
int axis);
int CMC_shape subgrid axis_outer_increment(shape s, int axis);
int CMC_shape subgrid axis_outer_count(shape s, int axis);

CMC_shape_axis_ordering returns CMC_news_order if the specified axis
is in NEWS order (the standard order), cMC_serial_order if it’s in serial order.

CMC_shape_physical_axis mask returns an integer that represents the
physical mask for the specified axis. See Section B.6 for a discussion of physical
masks.

CMC_shape_subgrid_axis_length returns the subgrid length of the speci-
fied axis.

CMC_shape subgrid_axis sequence returns an integer that represents the
specified axis’s place in the sequence of axes within a subgrid.

CMC_shape_subgrid_size returns the total number of positions in the
subgrid for the specified shape.

CMC_shape_subgrid_axis_increment returns an integer representing how
many positions in memory separate consecutive subgrid positions along the spe-
cified axis. This is calculated by multiplying the subgrid lengths of all axes that
have smaller subgrid axis increments (that is, the axes with lower subgrid
sequences). If the positions along the subgrid axis are contiguous in memory, the
function returns 1.
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CMC_shape_subgrid_orthogonal_length returns the subgrid-orthogonal-
length for the specified axis. This is the total number of positions in the subgrid
divided by the subgrid length of the axis.

' CcMC_shape_subgrid_axis_outer_increment returns the product of the

May 1993

subgrid axis increment and the subgrid axis length for the specified axis.

CMC_shape_subgrid_axis_outer_count returns the product of the subgrid
lengths of all axes that have larger subgrid axis increments (that is, axes with
higher subgrid sequences) than the axis you specify.

Using allocate_detailed_shape

This section describes how to specify a layout using allocate_detailed
shape.

Include the header file <csshape.h> when you call allocate_detailed
shape.

The format is as follows:

shape allocate_detailed_shape (
shape *s,
int rank,
unsigned long extents(],
unsigned long weights|],
CMC_axis_order_t axis_orderings(],
int physical_masks(],
int subgrid lengths|(],
int subgrid_sequence[]);

where:
8 is a pointer to a shape. The remaining arguments specify
this shape, and the function returns it. You must provide
a value for this argument.
rank specifies the number of dimensions in the shape. You

must provide a value for this argument. For the remaining
arguments, you supply pointers to rank elements, one for
each dimension, starting with axis 0.
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specifies the number of positions along each axis of the
shape. You must provide values for this argument.

specifies the relative frequency of communication along
each axis; see Section B.3.2. For example, weights of 1
for axis 0 and 2 for axis 1 specify that communication
occurs about half as often along axis 0. Only the relative
values of the weights matter; for example, weights of 5
for axis 0 and 10 for axis 1 specify the same communica-
tion as weights of 1 and 2. Specifying the same values for
different axes indicates that they have the same level of
communication.

The weights values are used only if you specify neither
the physical_masks nor the subgrid lengths argu-
ment,

Pass NULL instead of the weights array to use the default
weights, which are 1 for each axis.

specifies the ordering of each axis, either
CMC_news_order or CMC_serial_ordezx. Specify
CMC_news_order to get the standard ordering; specify
CMC_serial_order to make the axis serial. Pass NULL
instead of this array to specify the default ordering, which
is cMC_news_order ordering for each dimension.

specifies the mapping of positions to physical nodes or
vector units — that is, it specifies the physical grid and
axis sequence; see Sections B.1.1 and B.1.4. See Section
B.6.1, below, for an explanation of how to specify the
physical masks.

You can pass NULL instead of an array, in which case the
values for this argument are automatically determined
from the extents and subgrid lengths; see Section B.6.1.
If subgrid_lengths is also NULL, the weights argu-
ment is used to define the shape.

subgrid lengths

specifies the subgrid length for each axis; see Section
B.1.3.
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You can pass NULL instead of an array, in which case the
subgrid lengths will be determined from the extents and
the physical masks (as described in Section B.6.1), or
from the weights if physical masks is also NULL.

subgrid_sequence

specifies the sequence of axes within a subgrid; see Sec-
tion B.1.5. The default is for the highest-numbered axis
to vary fastest (that is, the sequence is the reverse of the
axis numbers). You can also specify that the lowest-num-
bered axis is to vary fastest (that is, the sequence is 0, 1,
2,...). In either case, serial axes must be last in the
sequence. Other sequences are not allowed. For example,
specify [0, 2, 3, 1] if axis 1 is serial and the lowest-
numbered dimension is to vary fastest.

In More Detail

The allocate_detailed shape function provides you with several different
options for specifying a shape’s layout. The easiest option is to specify weights
for the different axes, and let the run-time system figure out the appropriate lay-
out. The most complete and flexible method is to use the physical_masks and
subgrid_lengths arguments to specify the exact layout you want.

Note that the discussion of the physical_ masks argument in this section
assumes that you are compiling for a CM-5 with vector units. If you are not com-
piling for the vector units, the use of the argument is the same, except that it
applies to nodes instead of vector units.

To understand the physical_masks argument, it is useful to review the concept
of a physical grid. The physical grid of a shape is the arrangement of vector units;
it has one position for each VU, arranged in a grid whose rank is the same as that
of the shape. The dimensions of the physical grid are each powers of two, since
there must be a power-of-two number of VUs in the partition.

If axis i of the physical grid has length d;, then we need logy(d;) bits to represent
a position in the physical grid along this axis. The physical mask for the axis is
a mask with loga(d;) bits set. When we number all of the VUs linearly, these bits
are the ones that determine each VU’s position along axis i in the physical grid.
We call this linear numbering the physical address of the VU.
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The vector units along the axis containing the least significant bit in the mask are
contiguous. Also, in the current implementation, the bits for any one axis must
be contiguous. ‘

Let’s assume we are going to run a program on 32 vector units, and we want a
physical grid that is [4][8], as shown in Figure 101.

vector unit axis 1
number\.
[0] 4] 8|12{16[20 24 |28
] 1{5]9]|13(17(21{25(29
axis 0
2| 6|10]14]18 |22 |26 (30
3| 7(11]15{19]23|27(31

Figure 101. A physical grid with a physical_masks argument of [3, 28].

We would represent the physical address of each of the 32 vector units with a
number between 0 and 32; this requires 5 bits:

bbbbb

MSB LSB

To specify a [4][8] physical grid:

= Axis O (4 vector units) requires the lowest 2 bits of the mask because the
vector units along this axis are contiguous; its physical_masks value is
therefore 3:

00011

MSB LsB

= Axis 1 (8 vector units) requires bits 3, 4, and 5 of thé mask; bits 0 and 1
are set to 0. Its physical_masks value is therefore 28:

11100
MSB LsB

If you want the vector units along axis 1 to be contiguous, the masks would be:
axis 0 = 11000 axis 1 = 00111

or [24, 7].
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Note that the least significant bits of the physical address denote the four vector
units within a node. Since communication within a node is more efficient than
communication between nodes, axes to which these two bits are assigned can be
more efficient directions for communication.

‘What if we want to maximize the speed of communication along axis 0? To do
that, we could allocate all the bits of the physical mask to axis 1. This would
create these masks:

axis 0 = 00000 axis 1 = 11111

or [0, 31]. Positions along axis 0 would be on the same vector unit, and perfor-
mance would be best along that axis.

If we are running our program on 64 vector units and want a physical grid of
[8][8], both axes require three bits. But note that the bit mask lets us specify the

axis sequence:

= To make vector units along axis 0 contiguous, specify axis 0 in the
low-order bits:
000111
and axis 1 in the high-order bits:
111000
or [7, 56].

= To make vector units along axis 1 contiguous, reverse the masks: [56, 7].

Note these constraints in the current implementation for specifying the physical
masks:

= Each physical mask must represent a contiguous set of bits. For example,
a mask of 5 (101 in binary) is illegal.

= The mask for one axis must not use any bits used by another axis. For
example, masks of 7 (binary 0111) and 12 (binary 1100) are illegal in com-
bination, because both use bit 3.

® The sum of the masks must use all bits 0 through n, where n is less than
or equal to the total number of bits that represent the vector units on which
the program will run. For example, if you are going to run on 32 vector
units, you can use all five bits, or the lowest four bits, or the lowest three
bits, and so on. You can’t use only the highest four bits. Typically the sum
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should be equal to the total number of bits, except for very small shapes,
which don’t use all of the vector units.

If you use less than the total number of bits, the shape will use less than
the total number of vector units; this is generally not a good idea.

= A serial axis must have a physical mask of 0.

Now let’s consider how the physical mask works in conjunction with the subgrid
length.

If you specify values for the physical masks argument but omit the sub-
grid_lengths argument (by passing a NULL value), allocate_detalled
shape will cause the appropriate subgrid lengths to be used. It calculates the
subgrid length for an axis by dividing the total length of the shape axis by the
length of the corresponding physical axis specified by the mask. If necessary, it
rounds up to accommodate the whole axis.

For example, if you have a shape that is [64][50] and you specify a physical grid
that is [4][8], the default subgrid lengths will be [16][7]; any other subgrid
lengths would either be illegal (because the values were too small, and therefore
didn’t evenly divide the axis), or cause memory to be unused unnecessarily
(because the values were too large).

Similarly, if you specify the subgrid lengths and omit the physical_masks
argument, allocate_detailed_shape calculates the appropriate physical
grid by dividing each shape axis by the subgrid length for that axis. It rounds up
to the next power of 2 if necessary.

For example, if the shape is [32][128] and the subgrid lengths are [16][16}, the
physical grid will be [2][8]. If the shape is [34][128] and the subgrid lengths are
[16][16], the physical grid will be [4][8].

If you specify subgrid lengths but pass NULL for the physical_masks argu-
ment, the lowest-numbered axis varies fastest; note that this is different from the
default run-time system behavior.

If your shape requires garbage positions, allocate_detailed_shape pro-
vides the appropriate number required per axis.
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B.6.2 Example

The program below can be used to show the difference in speed of communica-
tion between the default layout and one specified via allocated_
detailed_shape. The call to allocate_detailed_shape allocates all the
bits of the physical mask to axis 1, and specifies a physical mask of 0 for axis
0; this maximizes communication performance along axis 0, at the expense of
performance along axis 1.

#include <cscomm.h>
#include <cm/timers.h>
#include <stdio.h>

void time_grid(void)

{
double:current a, b;
int axis, i;

for (axis = 0; axis < rankof (current); ++axis)
{ ,

CM timer_clear (0);

CM_timer_start(0);

for(i = 0; i < 20; ++i)
{
from torus_dim(&b, &a,
sizeof (double:current), axis, 1);

CM_timer_stop(0);

printf (“Timings for axis %d:\n”, axis);
CM_timer_print(0);

}

main ()
{

shape ordinary, detailed;

unsigned long extents[2];
int physical_masks[2];

extents[0] = 20438;
extents([1] = 2048;

physical_masks[0] = 0;
physical_masks[1] = positionsof (physical) - 1;

ordinary = allocate_shape(&ordinary, 2, extents);
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detailed = allocate detailed shape(&detailed, 2, extents,
NULL, /* weights */
NULL, /* axis orderings */
physical_masks, /* physical masks */
NULL, /* subgrid lengths */
NULL); /* subgrid sequences */

with(ordinary)

{
printf (”Ordinary layout:\n”);
time_grid();

printf(”Detailed layout:\n”);
time_grid();

Note the use of positionsof (physical) - 1 to specify the physical mask
for axis 1. This makes the program portable among different-size partitions, and
between CM-5s with and without vector units.

Here is the output from a sample run of this program on a 32-node partition with
vector units:

Ordinary layout:

Timings for axis 0:

Starts: 1

CM Elapsed time: 0.146 seconds.
CM busy Time: 0.141 seconds.
Timings for axis 1:

Starts: 1

CM Elapsed time: 0.160 seconds.
CM busy Time: 0.155 seconds.
Detailed layout:

Timings for axis 0:

Starts: 1

CM Elapsed time: 0.127 seconds.
CM busy Time: 0.121 seconds.
Timings for axis 1:

Starts: 1

CM Elapsed time: 0.333 seconds.
CM busy Time: 0.325 seconds.
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(Your results, of course, may vary.)

Note that the times for the £rom_torus_dim calls along axis 0 are somewhat
faster for shape detailed than for shape ordinary. Timings along axis 1,
however, are much slower along axis 1 for shape detailed than for shape
ordinary. This shows the effect of using allocate_detailed shape. The
default layout provides superior performance in the general case, where there is
communication along both axes. The detailed layout provides better performance
for one case (communication along axis 0), but its performance in the general
case is much worse than that provided by the default layout.
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Appendix C
Memory Layout on the CM-5

C.1

May 1993

This appendix describes the memory layout used by CM-5 C*, and explains how
to access physical memory characteristics of parallel variables. This information
is not ordinarily necessary for C* programming. It is provided for advanced C*
users who may need the information to mix their C* code with low-level code,
such as C/DPEAC, or to perform special manipulation of data through shape
aliasing, as described in Section C.4.

The representation of parallel variables is very much implementation-dependent
and could change in future releases of CM-5 C*. In many cases, making use of
the information provided in this appendix requires a detailed understanding of
how the C* memory layout mechanisms work. For the sake of reliable and
portable programming, we urge you to avoid depending on these mechanisms.

Note that we describe memory layout on vector units. The discussion also applies
to the nodes if you use the -sparc option to compile for execution on the nodes.

Memory Layout of Parallel Variables

Appendix B describes how the shape layout mechanism works and describes
how to access specific layout information for a shape. This section reviews some
of the concepts from that appendix and extends the discussion to specific
memory layout issues for parallel variables.

A C* paralle] variable on the CM-5 has the same amount of memory and the
same address in each vector unit. In general, a parallel variable may have more
than one value in each VU. The parallel variable’s shape determines the exact
layout of the variable’s positions on the VUs.

2N
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I

On each VU, the data representing a parallel variable is arranged in a subgrid.
The subgrids on each VU are always the same size. Elements in the subgrids on
some VUs may not correspond to positions of the parallel variable; these are
called garbage positions and are explained in Appendix B.

Each subgrid can be thought of as a multidimensional array of elements. For the
purposes of computation, however, it is simpler to view the subgrid as a 1-dimen-
sional array of elements, since we’re not particularly concerned with the ordering
of the elements in the subgrid. The total number of positions in each subgrid is
called the subgrid size. The function cMC_shape_subgrid_size returns a
shape’s subgrid size; see Section B.5. In the current C* implementation, the
subgrid size is always a multiple of eight on the vector units; this restriction does
not apply on the nodes.

Suppose we have a parallel integer declared in a shape that has 16 subgrid
elements in each VU:

shape [positionsof (physical) * 16]S;
int:S a;

The representation of a in VU memory is such that each VU has 16 integer
elements, contiguous in memory. If a is stored at the memory location
0x50001448 on each VU, then the VU memory representing a would be:

0x50001448: a subgrid 0
0x5000144c: a subgrid 1
0x50001450: a subgrid 2

0x50001484: a subgrid 15

Parallel structures and arrays are represenented such that the structure members
and array elements are contiguous in memory. Suppose we declare:

struct tri { int x, vy, z; };
struct tri:S b;
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If b is stored at location 0x50001488, it would be stored as:

0x50001488: b.x subgrid
0x5000148c: b.y subgrid
0x50001490: b.z subgrid
0x50001494: b.x subgrid
0x50001498: b.y subgrid
0x5000149c: b.z subgrid
0x500014a0: b.x subgrid

N R KRR RER OOO

0:.{5(.)001544: b.z subgrid 15
Similarly, if we declare:
float:S cl4];
and c is stored at location 0x50001548, it would be stored as:

0x50001548: c[0] subgrid 0
0x5000154c: ¢[1] subgrid 0
0x50001540: c[2] subgrid 0
0x50001544: c¢[3] subgrid 0
0x50001558: c¢[0] subgrid 1

0x50001644: c[3] subgrid 15

The distance in memory between successive subgrid elements is called the
memory stride. For a the memory stride is 4 bytes, for b it is 12 bytes, and for
‘c it is 16 bytes. (In general, the memory stride for a parallel variable is the
number of bytes that sizeof would return when applied to the variable.)

C.2 Pointers to Parallel Variables

In C*, the representation of a pointer to a parallel variable is different from that
of a pointer to a scalar variable, since it must contain more information than a
simple memory address. In particular, a pointer to a parallel variable carries three
pieces of information:

® the parallel variable’s memory address
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® jts memory stride
® jts shape

A pointer to a parallel variable is simply a scalar data type that contains all of this
information. (The current CM-5 C* implementation uses 16 bytes to represent a
pointer to a parallel variable.)

For example, if we declare
int:void *p;

and assign (using b declared in the previous section):
p = &b.y;

then p will have:

® a memory address that is the address of the first subgrid element of b.y
(four bytes offset from the address of b)

® a memory stride that is 12 bytes (the distance between successive subgrid
elements of b.y)

= ashape, which is 8

Because a pointer to a parallel variable may point to a member of a parallel
structure or an element of a parallel array, the memory stride is not necessarily
the size of the element pointed to. In the example above, although p points to a
4-byte integer, its memory stride is 12 bytes.

Manipulating Pointers to Parallel Variables

You can use the shapeof intrinsic to access the shape associated with a pointer
to a parallel variable. For example,

shapeof (*p)
evaluates to S when p points to b.y.

Two functions declared in <cashape.h> allow access to a pointer’s memory
address and stride. These functions are:
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void *CMC_pointer_mem_addr (void:void *p);
size_t CMC_pointer_mem stride(void:void *p);

The memory address returned by CMC_pointer_mem_addr is a VU instruc-
tion-space address; it is not a valid address on the partition manager. The stride
returned by CMC_pointer_mem_stride is in bytes.

It is also possible to construct a pointer to a parallel variable, given address,
stride, and shape information. The function cMC_make_pointex declared in
<csshape.h> accomplishes this:

void:void *CMC_make pointer (void *addr, size_t stride,
shape s);

Finally, the function cMC_change_pointer_shape, also declared in
<csshape.h>, changes the shape associated with a pointer:

void:void *CMC_change_pointer_shape (void:void *p,
shape s);

Note that this function could be written in terms of cMC_make_pointer,
CMC_pointer_mem addr, and CMC_pointer_mem_stride. It is discussed in
more detail in the next section.

Shape Aliasing

Advanced C* users may want to take advantage of the primitives discussed in
the previous section to allow parallel variables to be aliased so that the data is
used as if it were in another shape. This shape aliasing can allow data to be
manipulated in different shapes without actually performing any communication
operations, thus increasing performance.

Accomplishing shape aliasing requires a thorough understanding of how C* lays
out parallel variables in memory. Appendix B and Section C.1 should both be
consulted before attempting it. In particular, shape aliasing where garbage posi-
tions are used in a shape’s layout can be tricky. Careful use of
allocate_detailed_shape may be required in any case.
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C.4.1 Examples
Two examples are provided to demonstrate shape aliasing.

The first example, shown below, demonstrates how data in a 2-dimensional
shape can be viewed as data in a 1-dimensional shape. This technique is used to
accomplish a rank operation on a 2-dimensional data set, treating it as if it were
a 1-dimensional data set. It uses CMC_change_pointer_shape to accomplish
shape aliasing.

#include <cscomm.h>
#include <assert.h>
#include <csshape.h>
#include <stdlib.h>
#include <stdio.h>

void check shape padding(shape s);

main ()

{
shape [128] [positionsof (physical)]ls1;
shape [128 * positionsof (physical)]s2;

int:Sl a, b;
int:S2 *pa, *pb;

int i, j;

* Our shape aliasing in this example depends upon S1 and S2 having

* jdentical subgrid sizes and upon there being no padding used in

* the layout of each shape. The C* layout mechanism should guarantee
* that for the shapes declared above, but the code below verifies

* it.

assert (CMC_shape_subgrid_size(S1) == CMC_shape_subgrid_size(S2));
check_shape padding(s1);
check shape padding(s2);

/%
* Initialize "a” with random values.
*/

with(81)

{

a = prand() -% 100;

}

/*

* Alias “pa* and "pb” so that they point to "a” and *b* but have
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* 52 as their shapes.

*/

pa = CMC_change_pointer_shape(&a, S2);
pb = CMC_change_pointer_shape (&b, S2);

/*
* Rank the random values in ”"a” as if they were in a one-dimensional
* ghape.

*/

with(s2)

{

*pb = rank(*pa, 0, CMC_upward, CMC_none, CMC_no field);

}

/*

* print some of the results of the rank operation.
*/
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++3)
{
printf (" [$d] [%d] value: $3d rank: %d\n”,
i, 3, [i1131a, [i1131b);
} k
}

}

void check shape padding(shape s)
{ .

int axis, physical_dim, axis_mask;

/*
* For each axis, ensure that the product of the physical grid
* dimension and the subgrid dimension is equal to the shape’s
* dimension. If this is not so, then the shape has positions that
* are used for padding, and our shape aliasing example will not
* work.
*/
for(axis = 0; axis < rankof(s); ++axis)
{
/*
* Calculate the dimension of the physical grid by counting the
* number of bits in the physical axis mask.
*/
axis_mask = CMC_shape_physical_axis mask(s, axis);
physical_dim = 1;
while (axis_mask)
{
if (axis_mask & 0x1) physical_dim <<= 1;
axis mask >>= 1;
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}

/*
* Check that there is no padding for the axis.
*/
assert (dimof (s, axis) ==
CMC_shape_subgrid axis_length(s, axis) * physical_dim);

The second example demonstrates shape aliasing that allows a parallel array of
integers to be viewed as a single 2-dimensional parallel integer. This requires
both a sophisticated use of allocate_detailed_shape and manipulation of
pointer strides.

#include <assert.h>
#include <csshape.h>
#include <stdio.h>

shape allocate_alias_shape (shape orig_shape, int new_axis len);

main ()

{
shape [128 * positionsof (physical)]S1;
int:81 al[10], b;

shape 82;
int:void *pa;

int i, j;

with(S1)
{
for(i = 0; i < 10; ++i)
{
afi] = i * pcoord(0);
}
}

S2 = allocate_alias_shape(Si, 10);
pa = CMC_make_pointer (CMC_pointer_mem addr(a), sizeof(int), S52);

with(82)
{

/*

* The data in the array “a” can now be treated as a single
* two-dimensional parallel variable by dereferencing “pa”.
*
*

We check that the values pointed to by “pa” are correct, and
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* then add 1 to all of them.
*/
assert (&= (*pa == pcoord(0) * pcoord(i)));

*pa += 1;

with(sS1)
{
/*
* Similarly, we can still view the data as a 1-d parallel
* array:
*/
for(i = 0; i < 10; ++i)
{
printf ("a[%d]:~, i);
for(j = 0; j < 4; ++3)

{
printf(” %3d", [jlalil);
}
printf(* ...\n%);
}
}
}
/t

* allocate_alias_shape() creates a 2-d shape given a 1-d shape.
* The second dimension is used to alias a parallel array to be
* a simple type in this shape.
*/
shape allocate alias_shape (shape orig_shape, int new_axis_len)
{
shape new_shape;
unsigned long extents[2];
int subgrid lengths[2];
int subgrid_sequences(2];

/*
* The scheme would be somewhat more complicated for multidimensional
* shapes.
*/

assert (rankof (orig_shape) == 1);

/*

* The new shape will be 2-d, with axis 0 having the original

* dimension and axis 1 having a dimension that is equal to the
* dimension of the array we are aliasing.

*/
extents[0] = dimof (orig_shape, 0);
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extents[1] = new_axis_len;

/*

* We use the original subgrid length for axis 0, and the array

* dimension for the subgrid length of axis 1. This ensures that
* axis 1 has no off-VU component.

*/

subgrid_lengths[0] = CMC_shape subgrid_axis_length(orig_shape, 0);
subgrid lengths[1] = new_axis len;

/*
*+ These subgrid sequences ensure that axis 1 has the lowest stride,
* necessary to properly alias the array.

*/
subgrid_sequences[0] = 1;
subgrid_sequences 1] = 0;

/*
* The weights, axis orderings, and physical masks are not specified
* because the other information sufficiently constrains our new

* shape. '
*/
new_shape = allocate_detailed shape (&new_shape,
2, /* rank */
extents,
. NULL, /* weights */
NULL, /* axis orderings */
NULL, /* physical masks */
subgrid lengths,
subgrid_sequences) ;
/*
* Verify that the subgrid increments are correct.
*/

assert (CMC_shape_subgrid axis_increment (new_shape, 0) ==
new_axis_len);
assert (CMC_shape_subgrid axis_increment (new_shape, 1) == 1);

return new_shape;
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CM-5 C* provides an efficient mechanism for parallel lookups into a single table.
If you use this mechanism, C* replicates the table once per node or vector unit,
rather than in each position of a shape.

To use the table lookup utility, include the file <cstable.h>.
The utility consists of four functions:

@ = Call cMC_allocate_shared_table to allocate the table on the nodes.
It takes as its argument the size of the table (the total number of elements
in the table times their size in bytes), and it returns a pointer to a parallel
variable that indicates the table’s location on the nodes. Its definition is:

void:void *CMC_allocate_shared table(size_ t table_ size);
It is legal to use the pointer returned by this function only with the other
table lookup functions.

= Call cMc_initialize_shared table to put values into the table. Its
definition is:
void CMC_initialize_shared_table(void:void *table,

const void *values,
size_t table_size);

where:
table is the pointer to the table, returned by
CMC_allocate_shared table.
values is a pointer to the scalar table values.
()
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table_size is the size of the table in bytes. This is the same
size specified to the cMc_allo-
cate_shared table function.

Call cMC_lookup_shared_table to do a lookup in the table on the |

nodes. Its definition is:

void CMC_lookup shared table(void:current *result,
void:void *table,
int:current index,
size_t element_size);

where:

result is a pointer to a parallel variable of the current
shape that holds the results of the lookup.

table is the parallel pointer to the table.

index is a parallel int of the current shape; its values
are the indices into the table.

element_size is the size of each element in the table, in bytes.

Call cMC_free_shared_table to deallocate the memory allocated on
the nodes to the table. Its definition is:

void CMC_free_shared table(void:void *table);

where table is the pointer returned by cMC_allo-
cate_shared_table.

D.1 An Example

In this example, a table of 24 ints is allocated and initialized in a 16384-position
shape on the nodes. Random numbers are used as the index into the table, and
the results of some lookups are printed. Finally, the memory for the table is freed.

#include <stdio.h>
#include <stdlib.h>
#include <cstable.h>

int table_datal24] = {

};

14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2
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main()

{

shape [16384]s;
int:s index, result;
void:void *table;
int i;

table = CMC allocate _shared_table(sizeof (table_data));
CMC_initialize_shared table(table, table_data,
sizeof (table_data));

with(s)
{
index = prand() % 24;
CMC_lookup_shared table(&result, table, index,
sizeof (result));

}
for(i = 0; i < 20; ++i)
{
printf (*$d\n”, [i]lresult);
}

CMC_free_shared table(table);
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active

bool

collision

combiner type

context
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Glossary

Of elements and positions: Participating in parallel operations.
Parallel operations within a where statement are carried out
only on paralle] variable elements left active by the where
statement.

A dimension of a shape. Axes are numbered starting with 0 and
are read from left to right in a left index. For example, if a
shape is declared as “[256] [512] ShapeA”, shape ShapeA has
256 positions along axis 0 and 512 positions along axis 1.

An unsigned single-bit integer data type.

An attempt by more than one parallel variable element to send
values to or get a value from the same element at the same time.
C* provides mechanisms for avoiding collisions.

In communication functions: The type of operation to be carried
out by the function—for example, add values, multiply them, or
perform a bitwise logical AND.

The active positions of a shape as set by a where statement.
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coordinate A number that identifies a position or an element along an axis.
For example, the coordinates of parallel variable element
[6] [14]p1 are 6 for axis O and 14 for axis 1.

corresponding elements
Elements of different paralle] variables that are at the same posi-
tion. Corresponding elements have the same coordinates and the
same shape.

current shape The shape on whose parallel variables parallel operations can be
performed. The with statement selects the current shape.

current predeclared shape name
A shape name that C* equates to the current shape. Variables
declared to be of shape current (for example, in a function)
are of the shape that is current when the declaration is made.

direction In communication functions: The direction along an axis in
which a function is to perform its operation. An upward direc-
tion is from lower-numbered coordinates to higher; a downward
direction is from higher-numbered coordinates to lower.

element An individual data point of a parallel variable. A parallel vari-
able has one element at each position in its shape.

exclusive operation
In communication functions: An operation that excludes the first
position of a segment-bit scan set, and that includes the first po-
sition of a start-bit scan set in the operation for the preceding
scan set. Compare inclusive operation.

general communication
Communication in which any parallel variable element can send
a value to or get a value from any other element, whether or not
their positions are in the same shape. Compare grid commu-
nication.
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get operation ‘An operation in which a parallel variable gets values from
another parallel variable. For example: “dest =
[index] source;”.

grid communication
Communication in which a parallel variable sends values to or
gets values from another parallel variable in the same shape, us-
ing the coordinates of the parallel variable’s elements. Compare

general communication.

hyperplane In communication functions: A set of positions whose coordi-
nates are allowed to differ along more than one axis. Compare
scan class.

inactive Of elements and positions: Not participating in parallel
operations.

inclusive operation ‘
In communication functions: An operation that includes the first
position of the scan set. Compare exclusive operation.

intrinsic function A function that is defined as part of the language.

left indexing A method of specifying an element or elements of a parallel
variable, or the dimension(s) of a shape, using values in brackets
to the left of the variable or shape’s name.

multicoordinate A value obtained by the make_multi_coordinate function
that specifies which element of a parallel variable is to be spread
through each hyperplane for the copy_multispread function.

notify bit - In the send function: a bool-sized parallel variable, each ele-
ment of which can be set when the corresponding element of the
destination parallel variable receives a value.
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parallel operation An operation carried out on more than one element of a parallel
variable at the same time.

parallel variable A variable consisting of multiple data points, called elements,
arranged in a specified shape. The declaration “int : Shapea
p1;” declares p1 to be an int-length parallel variable of shape
ShapeA. Compare scalar variable.

pcoord function An intrinsic function that returns a parallel variable whose ele-
ments are initialized to their coordinates along a specified axis.

pbysical shape A shape predeclared by C*. It is 1-dimensional, with the number
of positions equal to the number of physical processors allocated
to the program at run time.

position An area of a shape that can contain parallel variable elements. A
shape declared as [8192] ShapeB contains 8192 positions, ar-
ranged along one dimension. A parallel variable of a given
shape has an element in each position of that shape.

predeclared shape name
A shape name provided as part of the language. The three
predeclared shape names are current, physical, and void.

promotion Changing a scalar variable into a parallel variable by replicating
the value of the scalar variable in each position of the shape.

rank The number of dimensions of a shape. A shape declared as
[512] [256] ShapeA has rank 2. A shape can have up to 31

reduction operator
An operator that reduces a parallel variable to a single scalar
value by performing a combining operation. For example, the
reduction operator += adds the values of active elements of a
parallel variable. '
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sbit

scalar variable

scan class

scan set

segment bit

send address

send operation

shape
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e

In communication functions: A bool-sized parallel variable. An
element of an sbit, when set to 1, marks the beginning of a scan
set at the element’s position. An sbit can be interpreted as a seg-
ment bit or as a start bit, depending on the value of the smode
argument to the function.

A Standard C variable, having only one value. Compare parallel
variable.

In communication functions: A set of positions whose coordi-
nates differ only along a specified axis. Compare hyperplane,
scan set.

In communication functions: A subset of a scan class, the begin-
ning of which is marked by an sbit.

In communication functions: The interpretation of an sbit when
the value of the smode argument is CM_segment_bit. When
an sbit is a segment bit: 1) the sbit starts a scan set when the
value of its element is 1, whether or not it is in an active posi-
tion; 2) scan sets are not affected by the direction of the
operation; and 3) operations in one scan set never affect values
of elements in another scan set. Compare start bit.

An address that, along with a position’s coordinates, uniquely
identifies that position among all positions in all shapes.

An operation in which a parallel variable element sends a value
to another element. For example: “[index] dest =
source;”.

A template for paralle] data. A shape is declared in a shape
statement and consists of a number of positions organized in up
to 31 dimensions. All parallel variables must have a shape, and
no parallel operations can be carried out unless a shape is made
current by a with statement.
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shape-valued expression

An expression that can be resolved to a shape name, and can be
used anywhere a shape name is used. For example,

“shapeof (p1) ” returns the name of the parallel variable p1’s
shape and can be used in place of that shape’s name.

start bit

torus

In communication functions: The interpretation of an sbit when
the value of the smode argument is CM_start_bit. When an
sbit is a start bit: 1) an sbit starts a scan set only when the value
of its element is 1 and the element’s position is active; 2) when
the direction is downward, scan sets are created from the higher
coordinate to the lower coordinate; and 3) in an exclusive opera-
tion, the position whose sbit element is 1 receives a value from
the preceding scan set, if there is one. Compare segment bit.

A doughnut-shaped surface. C* “torus” communication func-

tions use a grid as if it were wrapped into a torus, with the

opposite borders of the grid connected. An element that requires

a value from beyond the border gets it from the other side of the ‘

grid.

void predeclared shape name

whexe statement

with statement

wrapping

An extension of the ANSI keyword void. It specifies a shape
without indicating what the shape’s name is. The void
predeclared shape name can be used only as the target shape of
a scalar-to-paralle] pointer.

A statement that sets the context for parallel operations within
its body. For example, “where (p1 = 4)” causes parallel op-
erations to be carried out only on elements in positions where
the parallel variable p1 is equal to 4.

A statement that chooses the current shape. Parallel operations
within the body of a with statement must (with some excep-
tions) be carried out on parallel variables of the current shape.

In communication functions: Obtaining values from the other
side of the grid. e

May 1993
Copyright © 1990-1993 Thinking Machines Corporation



Symbols

. (period), 140
1,48
?7:,49-50,77
&, 42

not allowed with parallel-left-indexed

parallel variable, 132

&&,45,77
&=, 57
%, 51
%%, 51-52
++,48
-=,55
*=, 55
/=,55
~=, 57
11,48,77
| =, 56,74
<?,50-51
<?=,51-62
>?, 50-51
>?=, 51,56
>=, 48

A

active positions, 11, 63

See also positions

and scan sets, 183

obtaining the number of, 112

using cast to obtain number of, 112

when shape first selected, 63

when there are no, 71-74
allocate_detailed_shape

CM-2 version, 243

CM-5 version, 247

using, 261

allocate_shape, 108, 210, 243
ANSL 3
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arrays
See also parallel arrays
and parallel structures, 30
and pointers, 85
arrays of shapes, 114
and pointers, 105-116
partially specifying, 104-105
axis, 19, 150
serial, 255
weighting, 257
axis sequence, 251
axis_mask, 205, 234

bitwise AND, 57, 176
bitwise exclusive OR, 57, 176
bitwise OR, 56, 76, 176
used to prevent code from executing, 74
bitwise reduction operators, 56-57
block scope, branching into, 23, 28
bools, 58, 110
boolsizeof, 59, 223
border behavior, 151
and pcoord, 140
break, 40
and everywhere, 71
behavior in nested where statement, 70

Cc

C operators
with scalar and parallel operands, 44-47
with scalar LHS and parallel RHS, 45-47
with scalar operands, 43-44
with two parallel operands, 47-48

C*
and C, 3-4
program development facilities of, 5
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C* program
compiling, 15
executing, 15
casts, 112-114
parallel-to-scalar, 46, 114
scalar-to-parallel, 112
to a different shape, 113
<cm/cmtypes.h>, 243
CMC_change_pointer_shape, 275
CMC_combiner_add, 176
CMC_combiner_copy, 176
CMC_combiner_logand, 176
CMC_combiner_logioz, 176
CMC_combiner_logxor, 176
CMC_combiner_max, 176
CMC_combiner_min, 176
CMC_combiner_multiply, 176
CMC_combiner_overwrite, 219,222
CMC_combiner_t, 187
CMC_communication_direction_t, 187
cMC_downward, 184
CMC_exclusive, 181
cMC_inclusive, 181
CMC_make_pointer, 275
CcMC_no_field, 187, 222
CMC_none, 187
CMC_pointer_mem_addr, 275
CcMC_pointer_mem stride, 275
CMC_scan_inclusion_t, 187
cMC_segment_bit, 182
CMC_segment_mode_t, 187
cMC_sendaddr_t, 211
cMC_shape_axis_ordering, 260
CMC_ghape physical_axis_mask, 260
cMC_shape_subgrid_axis_increment,
260
CMC_shape_subgrid_axis_length, 260
CMC_shape_subgrid_axis_outer_count,
261
CMC_shape_subgrid_axis_outer_
increment, 261
CMC_shape_subgrid_axis_sequence,
260
cMC_shape_subgrid_orthogonal
' length, 261

CMC_sghape_subgrid_size, 260, 272
CMC_start_bit, 182
CMC. upward, 184
collision_mode, 215
collisions, 124

in get operations, 215-216

with parallel left indexing, 123-126
combiner, types of, 175-208
conditional expression, 49-50
conditional operator, 77
context, 63

See also where

effect on other contexts, 69

resetting, 65, 70
continue, 40

and everywhere, 71

behavior in nested where statement, 70
coordinates, 22, 76, 147, 149
copy_multispread, 178, 205-206, 232-235
copy_reduce, 192-193
copy_spread, 195-196, 232
.cs, 8
<cscomm.h>, 146
<csshape .h>, 260, 261, 274
current, 91, 97-98, 240
current shape, 11, 37, 63, 96

and pointers, 83, 84

D

deallocate_ghape, 109-110
demotion, parallel-to-scalar, 46
dimensions, 103

maximum number of, 109

partially specifying, 105
dimof, 23, 33, 105, 141

and pcoorxd, 141-142
direction. See upward direction, downward

direction

downward direction, 186

and scan sets, 184
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elements, 7, 9, 25, 118
and positions, 27-28
choosing, 176-186
corresponding, 27, 47
operations on, 67
sorting by rank, 223-225

else clause, 65-66

enumerate, 197-199

enums, parallel, 61

everywhere, 70-71, 240
in functions, 95

exclusive operation, 181

extern, and shapes, 106

F

£111_axis_descriptor, 245
float constants, 239
framebuffer, 244
from grid, 158-161
from grid_dim 152-158
from_torus, 165-169
from_torus_dim 165-169
function prototyping, 92, 240
functions

and shapes, 96-97

as shape-valued expressions, 97

intrinsic, 23

overloading, 100-101

passing by reference, 94

use of everywhere in, 240

using parallel variables with, 91-94

G

garbage positions, 248
effect on performance, 259
general communication, 147, 242
use grid communication in preference to,
242
get function, 213-218
and parallel structures or paralle] arrays,
216
collisions in, 215-216
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get operation, 119-120, 214

and collisions, 123-124, 215-216

in functions, 95, 129

inactive positions in, 126-127

use send operation in preference to, 243

global, 206-207, 209
goto, 40

and everywhere, 71

behavior in nested where statement, 70

branching into block containing shape
declaration, 23

branching into block with paralle] variable
declaration, 28

grid communication, 146, 147, 175, 242

and inactive positions, 151-152

and pcoord, 139-142

aspects of, 149-152

direction of, 150

distance of, 151

use in preference to general
communication, 242

hyperplane, 204, 232

i£, 56,74
image buffer, 244
inactive positions, 68

See also positions

and parallel left indexing, 126-130

and scan sets, 183

and send operations, 220

behavior in grid communication, 151-152

index variable, use of, 121-122
initializing, using parallel variables, 41

left index, 34, 42

and scalar variables, 34
parallel, 118-135
and pcoozxd, 139
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limitations of, 132
what can be indexed, 132
precedence of, 35
local shape, assigning to a global shape, 107
logical AND operator, 45, 77
logical OR operator, 77
looping through all positions, 75

main, 240
make, 5
make multi_coord, 232-235
make_send address, 209-213, 223, 226,
230
matrix
multiplying diagonals in, 133-142
transposing, 138-140
maximum operator, 50-51
maximum reduction operator, 56
memory stride, 273, 275
minimum operator, 50-51
minimum reduction operator, 56
modulus operator, 51-52
multicoordinate, 232
obtaining, 233
multispread, 178, 202-205

news order, 244
notify bit, 219, 222

o

overload, 100, 101
overloading, 91, 100-101

P

palloc, 103, 110-112

parallel arrays
declaring, 30-31
elements of, 31
getting, 216
initializing, 32

parallel indexes into, 86-89
sending, 221-223
parallel right indexing, 86
performance of, 246
parallel structures
declaring, 28-30
getting, 216
initializing, 32
sending, 221-223
parallel unions. See unions, parallel
parallel variables, 9
allocating storage for, 110-112
choosing an individual element of, 13, 34
communicating with scalar variables, 226
compared with scalar, 24-25
declaring, 25-28
declaring multiple, 26-28
declaring with a shape-valued expression,
114-115
initializing, 31-36, 41
mapping to another shape, 130-132
memory layout in CM-5 C*, 271
not of current shape, 41
obtaining information about, 32-33
passing as argument to function, 91-92
returning from function, 93-94
scope of, 28
sending, 218-221
unary operators for, 48
parallel-to-scalar assignment, 46
when no positions are active, 72
Paris, 4, 246
passing by value, 94
pecooxd, 76, 135-139
and enumerate, 197
and grid communication, 139-142
pfree, 111
physical, 115
physical grids, 248, 263
effect on performance, 258
pointer arithmetic, 85-86
pointers
scalar-to-parallel, 82-84
adding a parallel variable to, 88-89
and parallel structures, 30
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as arguments to a function, 92
CM-5 C* representation of, 273
scalar-to-scalar, 81
to shapes, 82
positions, 9
See also active positions, inactive positions
and elements, 27-28
definition of, 19
looping through all, 75
positionsof, 23, 33, 105
and where, 66
Prism, 5
promotion, bool to int, 59
promotion, scalar to parallel, 44, 45, 112, 122

rank, 19, 103, 108, 145
sorting elements by, 223-225
rank function, 199-202, 223
rankof, 23, 33
and a partially specified shape, 104
and fully unspecified shape, 104
read_from_position, 226-227
read from pvar, 227
reduce, 190-192
reduction assignment, 14
and global, 206
parallel-to-parallel, 54
parallel-to-scalar, 52
when no positions are active, 73
with a parallel LHS, 57
with send operation, 125
reduction operators, 52-58
list of, 54-55
precedence of, 58
unary, 53
return, 40
and everywhere, 71
behavior in nested where statement, 70

S
sbit, 179, 182, 183, 190
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scalar variables, 10
communicating with parallel variables, 226
contrasted with ANSI definition, 24
in left index, 34
promoted to parallel, 44
use in preference to parallel variables, 239
scan, 176, 186-190
difference from reduce, 191
scan class, 176-208
subset of hyperplane, 204
scan set, 179-181
scan subclass, 179, 190
scan subset, 190
scope
of parallel variables, 28
of shapes, 23-24
segment bit, 182, 183
send address, 147, 149, 210
obtaining a single, 210-211
obtaining more than one, 211-213
send function, 218, 223
and paralle] arrays or parallel structures,
221-223
and parallel variables, 218-221
differences from send operation, 219-220
send operation, 120-121
and collisions, 124-126
and send function, 219-220
comparing parallel left indexing and send,
219-220
in functions, 95, 129
inactive positions in, 127-128
use in preference to get operation, 243
with parallel left indexing, 219
send order, 244
serial axes, 255
effect on performance, 259
shape aliasing, 275
shape names, predeclared, 97, 115
shape selection, 10
shape-valued expression, 33, 39
declaring parallel variable with, 114-115
in casts, 113
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shapeof, 33
used with void shape, 99
using to access a pointer’s shape, 274
shapes, 8
See also current shape
as arguments to functions, 96
choosing, 21
creating copies of, 106, 110
deallocating, 109-110
declaring, 21-23
declaring multiple, 22
default, 39
default layout on CM-5, 248
definition of, 19
dynamically allocating, 108-109
equivalence of, 106-107
fully unspecified, 103-104
maximum number of dimensions in, 19
not allowed in structures, 30
obtaining information about, 23-24
partially specified, 103-106
returned by functions, 96-97
scope of, 23
size restrictions on CM-2/200, 20
switching between, 70
smode, 182
spread, 194-195, 202
start bit, 182
<stdlib.h>, 109, 110
structures. See paralle} structures
subgrid layout, controlling, 254
subgrid length, effect on performance, 258
subgrid sequence, 252
subgrid-orthogonal-length, 258
subgrids, 249
switch
branching into block containing shape
declaration, 23

branching into block with parallel variable

declaration, 28

T

to_grid, 161

to_grid dim, 161
to_torus, 169-174
to_torus_dim, 169-174
torus, 165

U

unary operators and parallel variables, 48
unions, parallel, 60
upward direction, and scan sets, 184

\')

variables. See paralle] variables, scalar
variables
void predeclared shape name, 91, 98-100
used when returning a pointer, 99

w

where, 63-67, 140

and parallel-to-scalar assignment, 67
and positionsof, 66
and scalar code, 67-68
controlling expression of, 64
nesting, 68
while, 76
with, 11, 37-39, 63, 226, 230
nesting, 39-41, 69-70
using a shape-valued expression with, 39
wrapping, 151
write_to_position, 229-230
write_to_pvar, 231
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